データ・アナリティクス入門

数字で解く最適ログイン戦略

視覚化はなぜ大事? 数字に集約し可視化することの重要性を改めて認識しました。代表値と分布に注目し、平均値や標準偏差の概念を意識することはもちろん、場合によっては単純平均ではなく適切な重みづけを行う必要があることも理解しました。 どうユーザー呼び込む? ログイン率向上のためには、プッシュ通知を活用したユーザー誘導施策が有効だと考えています。具体的には、アプリのログイン時間帯とユーザーの年代を比較し、どの時間帯にプッシュ通知を設定するのが適切かを検討していきたいと思います。 データは見えていますか? まずは、アナリティクスで必要なデータが可視化できているか、ログイン時間帯と紐づくユーザーの年代ごとのデータが抽出できるかを確認します。その上で、データの分散状況を把握し、最も効果が高いと思われる時間帯を優先して施策の検討を進める方針です。

データ・アナリティクス入門

妥協を捨てた学びの軌跡

現状の問題確認は? 問題を特定する際は、What、Where、Why、Howの観点から確認する重要性を改めて感じ、ABテストの存在も初めて認識しました。また、分析を進める中で「このくらいでいいや」という気持ちを捨て、徹底的に考え抜くことの大切さを実感しました。 企画実行はどう? 自ら企画を立案する際も、同じ観点で問題を明確にし、仮説を立て、データに基づいた検証を徹底することが必要だと考えます。そうすることで、企画の実行可能性が高まり、周囲からの賛同も得られると感じています。 学びをどう活かす? これまで学んだ内容を丁寧に振り返り、積極的な実践を心がけたいと思います。業務が繁忙になると学んだことをおろそかにしがちですが、本講義で得た知識を振り返り、日々の業務にどのように適用できるかを考える時間を常に確保していきたいです。

マーケティング入門

限られた時間で切り拓く未来

目標が見えるのはどう? 現在の立ち位置を見直す中で、目指す方向に不足しているものや課題が明確になりました。今後のステップもある程度見えてきた一方で、時間が有限であるため、時間軸を意識しながら必要な要素を取捨選択することが求められます。 リソース活用はどうするの? 自社のリソースが限られる中、全方位的な営業には限界がある現状を再認識しました。どのお客さまにどのような価値を届けるかを見つめ直し、まずは自社のリソース分析(強みや課題の把握)から取り組むべきだと感じています。 俯瞰視点は何を示す? また、業務を俯瞰する際には、フォアキャスティングだけでなくバックキャスティングの考え方も取り入れ、学んだ内容を活かしたいと考えています。常に広い視野と俯瞰的な視点を保つことで、新しい業態のヒントを見出し、業務に取り組んでいきたいと思います。

戦略思考入門

戦略で自分らしい未来を創る

得意分野と働き方は? 自分のゴールは、得意で興味のある分野を仕事にし、時間に縛られずに自由な働き方を実現することです。しかし、「得意なもの」とは何か、「時間に縛られず」とは具体的にどのような状態か、「自由に働く」とはどの条件を指すのかを、より明確にする必要があると感じました。 戦略実践の秘訣は? また、戦略的思考を実践するにあたっては、論理的な考え、基本的な算数、分析力、考え抜く力、情報収集能力など、さまざまな能力が求められると実感しています。こうした能力は、ロールモデルがあまりいない状況で目標に向かう際にも非常に役立つと感じています。 具体分析の進め方は? そのため、ただ漠然と進めるのではなく、3C分析、PEST分析、5フォース分析、差別化やトレードオフの考え方を用いながら、着実に目標へ向かって進んでいきたいと思います。

データ・アナリティクス入門

実践で変える!問題解決の第一歩

試す手法は何だろう? 問題の要因がある程度明確になったら、試しやすい手法で課題解決に向けた取り組みを実際に試すことが重要です。たとえば、既存の手法と定量的に比較できるA/Bテストのような方法を設計し、実践することが望まれます。 改善はどう実現する? また、課題の分析だけで満足せず、実際に改善を施して目的を実現することが肝要です。データ分析を行う際には、最終的に何を実現したいのかという目的を常に念頭に置く必要があります。 仮説はどう組み立てる? 一方、データ分析の手法に囚われ過ぎると、単にデータを出すことに多くの時間がかかり、問題解決に辿り着かない恐れがあります。したがって、まずは問題の要因を特定し、その後、有識者とのディスカッションや壁打ちを通じて、改善のための仮説を迅速に立案・実行できるように取り組むことが大切です。

クリティカルシンキング入門

柔軟思考で挑む新しい一歩

思考の整理はどう? 論理的思考や多角的な視点、適切な情報評価の大切さを改めて認識しました。情報の背景を正確に把握し、正しい問いかけができることで、複数の観点から物事を分析する力を養う必要があると感じています。 決断の根拠は? また、これまでの経験や情報に頼るだけでなく、判断の正確性を意識して計画を進めることの重要性を実感しました。一方で、考え込むあまり思考時間が長引き、スピード感が失われるリスクにも注意が必要だと感じています。 実行方法はどうなる? 今後は、リスク分析や問題解決、データ分析において、学んだ手法を活用しながら、必要な情報を漏れなくかつ重複なく整理して対応していくつもりです。思い込みやバイアスを排除するための具体的な方法はまだ確立していませんが、試行錯誤を重ねながら取り組んでいきたいと考えています。

戦略思考入門

声がぶつかる選択の岐路

なぜ選択肢を排除するの? 捨てる選択肢を持たない必要性を改めて実感しました。現在、役所の窓口サービスの改善に取り組む中で、現場の意見と幹部層の意向が大きく異なっています。 どうして意見が分かれるの? 現場では、サービスの提供過多が職員の負担増や来庁者の待ち時間増加につながるため、業務量の削減を望んでいます。一方、幹部層はサービスの質を維持することを重視し、業務量を減らさない方針です。両者の主張にはそれぞれ理由があり、両立は難しいと感じています。 どの解決策が最適? このような状況を踏まえ、どちらを選ぶべきか、また住民にとって最も有益なサービスとは何かという理想像を明確にする必要があります。そのためにも、理想を実現する根拠やデータを集め、双方が納得できる落とし所を見つけながら調整を進めていきたいと考えています。

クリティカルシンキング入門

具体で進む!打ち合わせ改革

共通のゴールはある? 自分のゴールと他人のゴールが異なっていると、結果的に全く違う目標となり話し合い自体が意味をなさなくなってしまいます。そのため、まずは共通の言語を使用し、抽象的な表現ではなく具体的な内容で確認することが大切であると気づきました。 短期目標で進むべき? また、長期的な目標ではなく、短期的な目標に焦点を当てる必要性も実感しています。以前、打ち合わせに入る際に明確な目標を設定せずに相談に臨み、結論が出ないまま時間だけが過ぎてしまった経験があります。今後は打ち合わせの冒頭で共通認識となる目標を確認し、議論を進めるように心がけます。 具体数値で示すと? さらに、「たくさん」「すぐに」といった抽象的な表現は避け、具体的な数字や期限を示すことで、より明確なコミュニケーションを図っていきたいと考えています。

マーケティング入門

実践から学ぶ!顧客志向の革新

顧客理解はどう進む? 顧客志向の重要性を改めて認識する機会となりました。利用者と意思決定者が異なる場合でも、実際に購入するお客様の意図を正しく理解することが、効果的なマーケティング戦略の構築に不可欠だと感じました。 価値は何で感じる? また、顧客が感じる価値には、機能的価値、情緒的価値、体験価値の三つがあると学びました。これらの観点は、サービスや製品の提供方法を見直す上で、多角的なアプローチの必要性を示しています。 自社価値はどう映る? さらに、自社が提供しているサービスや従業員向けマニュアルがどのような価値を生み出しているのかを再確認すること、そしてSNSなどを通じて自社の取り組みが世間でどのように受け止められているかをリサーチすることにより、自社が今後提供したい価値について深く考える大切な時間となりました。

データ・アナリティクス入門

数字で見つける成長のヒント

手法の違いは何だろう? 一般的な平均値は手軽に利用できますが、データのばらつきや目的に応じて、加重平均や幾何平均などの手法を採用する必要があると理解しました。普段は精度管理のため標準偏差を使用していますが、具体的な事例を通じて、他の場面でも活用できるというイメージが湧きました。 分析のコツは何? データの比較から仮説を立てる苦手意識が少し和らいだように感じます。定量分析では単純平均や標準偏差を用いていますが、定性分析も一旦定量値に置き換えて試してみたいと思います。また、人事考課にもデータが活用できるため、評価者間のばらつきや傾向を把握するのに役立つと考えています。さらに、臨床検査の提供プロセスにおいて、各段階でのかかる時間を分析し、収束していない部分を可視化することで改善の余地を見出せる可能性を感じました。

データ・アナリティクス入門

仮説実践!即断で未来を掴む

効果測定は本当に? A/Bテストの実施により、短期間で効果測定が可能であることを実感しました。一方、単にデータ収集に時間をかけるだけでは、必ずしも問題解決には結びつかないということが分かりました。 分析時間は適切? 業務を進める際、初めはデータ分析から始めることが多い中、分析に時間をかけすぎる傾向があると感じています。一定量のデータが得られた段階で、迅速に仮説を設定し、追加の分析が必要かどうかを判断するか、実行フェーズに移行するかを見極めることが重要だと学びました。 行動開始のタイミングは? このコースを通じて、仮説に基づき行動に移すタイミングの大切さを再認識しました。今後は、データ分析に没頭しすぎず、適宜ストップしながら、仮説思考を軸にした実践的なアプローチを心がけたいと思います。

データ・アナリティクス入門

未知の平均値に挑戦

指標の基礎はどう? これまで平均値と中央値を用いた分析は行っていましたが、加重平均、幾何平均、標準偏差といった他の指標については十分に理解していませんでした。今回、これらの指標の基礎を学ぶ中で、その重要性を実感しましたが、実際に活用するとなるとまだ課題が多いと感じています。今後は、これらの考え方をさらに深め、実践的な使い方を模索していきたいと思います。特に、経営指標として必要な幾何平均については、実データを用いて分析に挑戦する予定です。 どんな分析を試す? 自社製品の原価と営利に関する調査・分析の中で、今回学んだ幾何平均を早速活用し、過去のデータを基に営利分析を実施します。また、部門ごとの工数分析では、業務に費やす時間だけでなく、関わる人数も考慮に入れて評価し、より客観的な分析を目指します。

「必要 × 時間」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right