デザイン思考入門

実践から生む学びへのヒント

学生支援はどう実現? 自身の高専教員としての立場から、これまでの学びを実践に活かすための取り組みを行いました。まず、学生が直面する「基礎をしっかり学びたいが演習時間が足りない」というジレンマについて、その構造を明確に整理しました。学生が陥りやすい回避行動(課題の丸写しや要領だけの学習など)を予測し、それらを防止するための支援策を設計することで、より効果的なサポートを実現しました。 必要ツールは何だろ? また、各科目で最低限必要な学習ツールを特定し、その使い方を段階的に指導する「学びの三種の神器」の提供にも努めました。学生の成長に合わせた発展的なツールの提案、そして理解度や興味に合わせた課題の難易度調整や柔軟なグループ学習と個別学習の組み合わせにより、一人ひとりにカスタマイズ可能な学習支援を目指しました。 アプローチの効果は? さらに、「山と道」のアプローチを高専の教育現場に応用することで、いくつかの重要な気づきを得ました。まず、教員自身が学生と同じ立場で課題に取り組むことで、表面には現れにくい困難点が明確になり、学生の具体的な声を構造化できることを実感しました。これにより、より効果的な支援策の構築が可能となりました。 基礎習得はどう見る? また、基本的なツールや知識の確実な習得を前提とし、その上で個々の興味や理解度に応じた発展的な学びを提供する段階的設計が極めて重要であると感じました。加えて、小規模な改善を迅速に試み、学生のフィードバックを即座に反映させる継続的な実践と改善のプロセスが、教育の質向上につながると理解しました。 改善サイクルはどう機能? こうした経験を通じ、教育現場にも使用者視点に立った改善サイクルが存在することを改めて認識しました。今後もこの視点を大切にし、より効果的な教育実践を追求していきたいと考えています。

戦略思考入門

実務で学ぶ!戦略的フレームワーク活用

フレームワークの利便性とは? フレームワークを活用することで、情報の収集が網羅的に行え、見落としを防ぐことができると感じています。自分の判断に頼ると、偏った情報や自分に都合の良い情報を選びがちですが、フレームワークは効率的に必要な情報を集められる手助けとなります。 ターゲット設定はどうする? ターゲットを設定する際、具体的にしすぎると市場が狭まり、逆に抽象的だと広がりすぎる印象があります。このバランスについて、他の人の意見も参考にしながら学んでいきたいと思っています。 長期視点での差別化は可能? また、実現可能性や差別化の持続性を判断する際には、即座に取り組めるものもあれば、費用や時間、人材が関与し、長期的な視点が必要となる場合もあります。事例によっては、品質、量、価格、サービスなど、様々な側面での改善策を検討し、優先順位を設定して取り組むことが重要だと感じました。 顧客視点でのニーズ把握 実務を通じて、自分は競合製品との差別化に対する意識が高いと感じています。担当製品だけでなく、疾患領域の課題を検討することで、顧客視点でのニーズを把握できると考えています。製品の視点を疾患領域に変えることで、新たなポジショニングの視点が見える可能性もあると感じます。 将来を見据えた判断とは? さらに、実現可能な策においては、自社の過去の取り組みや製品の動向を把握することで、判断の参考にしています。疾患領域のトレンドを確認し、ガイドラインや学会のトピックスを理解することで、5年から10年後の治療を予測する準備ができます。そして、領域全体の中での適正なポジショニングを考えたいと思っています。 経営層の判断基準を理解する 直近のプランの審議では、経営層の判断基準を議事録から確認し、過去の製品のプランを参照して領域の特性を理解していきたいです。

クリティカルシンキング入門

踏み込むデータ、広がる発見の世界

データと本気で向き合う? データの用い方や見せ方について再確認でき、また新たな発見を得ることができました。従来は説得力や妥当性を高めるためにデータを利用してきましたが、今回の講習では「データとの向き合い方」自体に踏み込むことで、さらに可能性が広がると感じました。踏み込むというのは、データを分解・分析し新たな発見につなげることを意味します。これまでは、一定の目的が達成できればそれ以上深堀りしなかった自分を反省し、今後は偏りを減らしてより深く分析することで、発見の数や他者への探求の深さ、そして説得力の向上につなげたいと思います。単に表面的な理解で終わるのではなく、データから何が見えているのかを追求していく姿勢が大切だと感じました。 業務で分析は活きる? また、業務においては分類・分解・分析が多くの場面で役立つと実感しました。たとえば、目標設定では、市況や需要予測に基づいてシェアや販売量を設定し、その根拠となるデータや分析結果をもとに説明することで、計画の信頼性が高まります。実施計画においては、マーケティング戦略や営業活動の手段、ターゲット、期待できる効果、効果が現れるまでの時間などを細かく整理し、実行者、評価者、受益者それぞれとの連携を明確にすることが可能です。さらに、効果測定では、シェアや販売量・金額と実施計画との因果関係を明確にして、次のアクションの策定や判断につなげることができます。 分析手法を検討する? こうした業務プロセス全般において、データの分類・分解・分析は有効な手法です。具体的には、説明が必要な場面で、利用可能なデータや参考になる情報がないかを常に意識し、検討することが大切です。たとえば需要予測においては、単に過去の推移を見るだけでなく、季節要因や提供者ごとの特徴も踏まえて分析することで、より実効性のある判断が下せると感じました。

データ・アナリティクス入門

データ分析の要点と活用法を深堀りするコツ

Week6での気付きは? Week1から学んでいたことが、ようやくWeek6で腑に落ちた感じがしました。 仮説思考の重要性とは? ライブ事業では、ストーリーを立てて分析する方法を具体的に学びながら復習することができました。 よい分析のためには「仮説思考」が重要です。まず目的を明確にし、問いに対する仮説を立てます(例:打率ではなく失塁率が高い選手が原因ではないか)。次にデータを収集し、その仮説をデータで検証します。仮説がデータにより証明されなければ、新たな仮説を立て直します。 データ収集はどう進める? データ収集の手段としては、検索エンジンや公開データ、アンケートやABテストなどがあります。 分析を進める際の5つの視点として、以下の点が重要です: - インパクト:影響度の大きさ - ギャップ:何がどのように違うのか - トレンド:時間的な変化の傾向 - ばらつき:分布に隔たりがあるか - パターン:法則性があるか WEBマーケティング分析のポイント グラフ化のステップとしては、まず仮説やメッセージを明確にし、比較対象を決めて、適切なグラフを選びます。 WEBマーケティングの売上に繋がりやすい顧客の分析には、以下の点を考慮していきます: - 企業規模や購入製品群(リピート購入か、多種製品群を購入しているかなど) - 地域による差異 - 製品の月別の差異 - 顧客情報の獲得経路の有効性 これらをMECEに分解し、先入観を避けつつ仮説検証を進めます。 来月以降、少し余裕ができるので、上記の分析を進め、WEBサイトの改善を図ります。ロジックツリーの活用で細かく分解しつつも、Week6の講義にあったとおり、目的に必要な分析範囲を見極めたいと思います。また、メンバーに説得力のあるプロセスを踏み、説明することも重視したいと思います。

データ・アナリティクス入門

データに基づく問題解決法を学んだ充実の時間

分析の基本を理解するには? 講座全体を通して学んだことのポイントは以下の通りです。 まず、分析についてです。分析とは、比較することと同義です。そして、問題解決のプロセスにおいては「What→Where→Why→How」の順序で進めることが重要です。平均値を見る際には、そのばらつきにも注意を払いましょう。対策を決定する際には固定的にせず、柔軟に対応することが求められます。また、生存者バイアスに影響されないように注意し、生存者と非生存者の両方に目を向け、データの分布全体を分析する必要があります。結果を他人にわかりやすく伝えるためには、データのビジュアル化が有効です。 戦略策定で役立つ方法は? 次に、下半期の戦略策定です。クライアントの下半期戦略を作成する際に、講座で学んだ分析のフレームワークを活用することができます。 データをどう活かすか? さらに、分析結果の資料への落とし込みについてです。クライアントの意思決定を支援することを目的として、データの見せ方に工夫を凝らします。 データ分析の効率化を目指すには? データ分析のやり方の向上も重要です。AIなどのツールをうまく活用することで、精度の高い分析を短時間で実施します。必要最低限の情報をもとに素早く答えを出して実行する。このサイクルを多く回すことで、最短で最大の効果を生み出すことが可能です。 効果的なデータ伝達法は? 最後に、データ分析結果の伝え方についてです。対峙する相手は数値分析を本職としていないことが多いので、単なる数値の伝達だけでは不十分です。データを可視化し、クライアントの課題を踏まえたフォーマットに変換します。クライアントが知りたいのはビジネス上のインパクトです。そのため、ビジュアルで見せたり、ビジネス言語で表現して、一目で理解できるようにすることが重要です。

クリティカルシンキング入門

分析の切り口を変えて、新たな発見を!

データ分析で解像度を高めるには? データは受け取ったままではなく、一手間加えることで解像度が上がります。絶対値だけでなく、相対値でも数字を出して比率を確認し、数字はグラフ化することで視覚的に課題を見つけやすくなります。また、取り扱う情報が売り手側か顧客側かで分析の視点が変わることを認識しておくことが重要です。 偏りを防ぐためにはどうする? 基本的に売り手側の情報から分解することが多かったため、偏った視点だということを意識しなければなりません。切り口は時間、人、手段など様々な角度から分解し、可能な限りMECE(Mutually Exclusive, Collectively Exhaustive)で分解することで、ダブりなくモレなく網羅的に分析が可能になります。 新たな課題を発見する方法は? 事業部の売上を分解する機会がよくありますが、売り手側の情報に偏らないように注意が必要です。慣れた分解手法を使うことが多いため、異なる視点や切り口、深掘りをすることで、今まで見えていなかった課題を見つけることができるでしょう。 分解のブレを防ぐには? 事業部の売上や部署の売上、メニュー毎の売上、顧客毎の売上など、分解できそうな要素は多くありますが、まず最初に全体の定義を決めることで分解のブレを防ぎ、有効に活用していくことが大切です。毎週や毎月のように分析を行う機会があるため、週報や月報でこれまでと違った切り口で分解を試みてみようと思いました。 異なる切り口での分析の効果は? これまで「課題はこれだ」と決めつけていた部分も多かったため、本当にそうか疑い、別の切り口で分解することで新たな課題を特定できると感じています。早速今回の週報から分析と分解を活用し、全体の定義を決め、MECEで考えるよう心がけ、ダブりやモレのない進行を目指します。

データ・アナリティクス入門

数字から紐解く現場の実情

データ分析はどう見る? 今週はデータ分析の基本的なアプローチについて学びました。データを評価する際は、まず「データの中心がどこに位置しているか」を示す代表値と、「データがどのように散らばっているか」を示す散らばりの2つの視点が大切であることを実感しました。代表値としては、単純平均のほか、重みを考慮した加重平均、推移を捉えるための幾何平均、極端な値の影響を排除する中央値などがあると理解しました。また、散らばりの具体的な指標として標準偏差を学び、データが平均からどの程度離れて散らばっているかを数値で評価できることが分かりました。 現場での活用方法は? これらの知識は、実際の現場での作業時間、コスト管理、安全管理などに役立つと感じました。例えば、複数の現場における作業時間の平均を求める際、単純平均だけでなく、現場ごとの規模に応じた重みをつけた加重平均を用いることで、より実態に即した傾向を把握できると考えます。また、標準偏差を利用することで、同じ作業工程でも現場ごとのバラつきを数値で示し、ばらつきが大きい工程には重点的な対策が必要であると判断しやすくなります。数字の羅列だけでなく、背景や偏りを理解しながらデータを多面的に捉える習慣の重要性を再認識しました。 次のステップは何? 今後は、各現場における作業時間や工程進捗、コストなどのデータを収集し、単純平均だけでなく加重平均や標準偏差も併せて算出することから始めます。特に、同じ工程内で標準偏差が大きい場合は、どの現場で大きなばらつきが見られるのかを明らかにし、その現場の状況や原因を直接確認することで、関係者と改善策を議論します。また、社内報告でも単なる平均値だけでなく、ばらつきや偏りをグラフなどで視覚的に示すことで、現場間の違いや課題を分かりやすく伝える資料作りに努めていきたいと思います。

データ・アナリティクス入門

仮説習得が拓く未来の学び

仮説はどう活かす? スピードや精度を向上させるためには、分析の初期段階で仮説を立てることが重要だと学びました。結論に向けた仮説と問題解決のための仮説という二種類の仮説があり、それぞれ目的や時間軸に合わせて使い分けることが求められます。 フレームワークってどう活かす? また、3Cや4Pなどのフレームワークを活用することで、思考が整理され、仮説形成が容易になると感じました。仮説に沿って必要なデータを抽出し、場合によっては新たにデータを取得するプロセスは、効果的な分析の基本と言えます。数字で見えにくい効果も、可能な限り数値として示すことで説得力が増し、合理的な判断材料となります。 数字で信頼はどう? 具体的には、コンバージョンレートなどの数値計算により、直感だけに頼らず理論的な判断が可能となります。フレームワークを用いることで、業務のスピード感と精度が向上した経験もあり、反対意見を含めた多面的な情報収集が仮説検証の信頼性を高めると実感しました。 新機能はどう検証する? さらに、新機能をリリースする際には、3Cの観点から分析して優先度を明確化したり、施策ごとの「影響度×実行難易度」を評価することで、迅速な判断を下しています。ユーザーインタビューにおいては、どの層のユーザーがどのフェーズで不満を感じているかを仮説から検証し、具体的なデータに基づいて問題点を抽出する工夫も行っています。 仮説と判断はどう連携する? 週に一度、仮説をもとに業務課題を整理し、必要なデータを洗い出すワークシートを作成するなど、日常的な業務の中でも「仮説→データ→判断」の流れを徹底しています。毎月、ユーザーアンケートやインタビュー結果の分析から改善案を提案し、社内でのレビューにてその流れを共有することで、施策の精度や実行力の向上に努めています。

戦略思考入門

戦略思考で切り拓く未来の道

戦略思考のゴールとは? 戦略思考の定義を改めて考える機会となりました。重要なのは、目指すべき適切なゴールを設定し、現在地からそのゴールまでの道のりを描き、可能な限り最短・最速で到達することです。他者が簡単に真似できない独自性を加えることができれば、より優れた戦略となるでしょう。そのために、自身や自社・自部署の強みを改めて言語化し、再認識することが大切だと感じました。 大規模プロジェクトへの応用は? マクロ的には、部署を超えて進めるような大規模または長期のプロジェクトに活用できます。一方で、ミクロでは、自身のキャリア形成や日々の業務進行に役立てることができます。具体的には、四半期ごとの部署課題を見直すことが今すぐにできることとして挙げられます。課題を整理し、ゴールに向かって最短・最速で進んでいるか、方向性がズレていないかを見直し、必要に応じて計画を修正していくことが重要です。 バックキャスティングの活用法は? 具体的なステップとしては、まずバックキャスティングの習慣をつけることが大切です。つまり、今できることからではなく、到達目標を出発点として考えることです。仕事やプライベートの年間目標を設け、それらを月・週・日と細分化してスケジュールを作成することが始めやすい手段でしょう(今月中に実施)。次に、到達目標を明確にすることが必要です。何を実現したいのか、そのメリットやリスクは何かを考え、ゴールの認識を上司に確認します。また、自分を知ることも重要です。自身の強みや弱みを把握し、必要に応じてストレングスファインダーを実施します。目標とするメンターを探し、参考となる書籍を月に2冊読むことも良いアプローチです。学習する姿勢を持ち、早めの期限(例:毎週金曜日)を設けることで、定期的に学習を整理し復習する時間を確保することも推奨されます。

戦略思考入門

戦略的思考を身につけるコツ

戦略的思考は何? 戦略的思考とは、目標を明確に定め、その目標までの道のりを逆算し、最短・最速で到達するための考え方や意思決定法です。言い換えれば、できるだけ早く効率よく目的や目標を実現する方法とも言えます。戦略は大局的かつ長期的な目的や方針を指し、それに対して戦術は局地的で短期的な手段を意味します。 最小労力で成果は? 時間は有限です。そのため、最小限の労力で最大・最速の成果を求めることは非常に重要です。このためには、「やるべきこと」と「やらなくてもいいこと」をしっかりと選別する必要があります。そして、企業や事業が持続的な優位性を保つために「独自性」を持つことも大切です。 新規計画の鍵は? 新規業務においては、長期的な目標設定と、それを達成するための逆算による実行計画が鍵となります。この計画は、他者に理解してもらうための資料作成やプレゼンに活用できます。 目標修正はどう? 既存業務においても、大局的な目標を常にリマインドし、状況に応じた実行計画を修正することが求められます。現状を分析し、業務内容の必要性を見極めた上で、他者への説得やプレゼンに活かすことが可能です。 生活目標はどう? 私生活においては、適切なゴール設定を行う癖をつけることで、さまざまな状況における成功体験を増やすことができます。これにより、他者とのコミュニケーションにおいても、共感や参加を得やすくなるでしょう。 目標再考はどう? 無意識に自分流で行っていた目標設定や逆算についても懐疑的になり、長期的視点で適切な目標設定ができているかを考える時間を持つことが重要です。その上で目標達成までのルートを考え、「必要/不要」を判断し、より早く効率的な方法を検討します。さらに、「自分らしさ」を加えることができないか、一度考えてみることも有益です。

戦略思考入門

意思決定の極意:選ぶ勇気と捨てる技

感情とデータ、どちら? ビジネスにおける意思決定では、「捨てる(選択する)」という判断が必要なことがあります。限られた時間や資源の中で業績に貢献するための選択を行う際、感情的な理由に基づく判断は避けるべきです。「創業時から続けてきたから」「やめると処理が面倒だから」などの感情論を優先すると、業務が増え続け、効率が低下します。捨てるという判断には、定量データを参考にして指標を設定することが重要です。 定量と定性、どう? 中には「顧客とのつながり」や「担当者との関係性」などを指標にしている場面もあります。確かに、定量的なデータに基づく判断は重要です。しかし、何を具体的に取捨選択するかを決める際には、定性的な考え方も柔軟に取り入れることが有効だと感じました。すべてを定性的な考えだけで進めるのではなく、一定の根拠を持って選択肢を絞り込みつつ、関係者からの意見も取り入れながら精査することが大切だと思います。 施策の見直しは? 私たちのチームで行っている施策には、利益に対する投資対効果が出ていないものも少なくありません。人員が減り、残った社員への負担が大きくなりつつあります。中長期的な効果を見据えて進めている施策もありますが、現状では工数が増え、残業の増加やクオリティの低下が問題となっています。今回学んだ「捨てる」という概念を活用し、進行中の施策を棚卸しし、本当に今行うべきかを整理し、優先順位を再考したいと思います。 効果の測定はどう? まずは施策が生み出している利益や売上について数値的データを集めることから始めます。そして、実際にかかっている工数を把握し、投資対効果を測定します。短期的な成果を目的とする施策と中長期的な成果を目的とする施策にそれぞれ指標を設定し、優先順位を明確にし、自分のタスクに落とし込んでいくつもりです。

データ・アナリティクス入門

データ分析で実現する未来の可能性

比較の重要性とは? データ分析において、比較は極めて重要な要素です。要素を整理し、性質や構造を明確にすることで、なぜ「良い」あるいは「悪い」と判断されるのかを理解することができます。判断するためには、特定の基準や他の対象との比較が必要であり、比較を通じて初めてデータに意味が生まれます。 目標設定の重要性 分析には目的や仮説の明確な設定が不可欠です。分析の目的が曖昧であったり、途中でぶれてしまうと、都合の良いデータばかりを使う危険性が生じます。また、不要な分析に時間をかけてしまうリスクもあります。したがって、「何を得たいのか」という分析の目的と、それに必要なデータの範囲をしっかりと見極めることが必要です。 データの特性と可視化 データは質的データと量的データに分類され、さらにそれぞれ名義尺度・順序尺度または比例尺度・間隔尺度に分解できます。それぞれのデータの特徴を理解し、注意しながら扱うことが重要です。異なるデータを組み合わせることで、ひとつのデータだけでは見えてこなかった新しい情報を得ることが可能です。これらを効果的に可視化するために、グラフを利用しますが、グラフには適した見せ方があります。例えば、割合を示すには円グラフが、絶対値の大小を比較するには棒グラフが適しています。 新プロダクトの市場分析 現在、私は新しいプロダクトのリリースによって市場規模がどれだけ拡大するかについての分析を進めています。分析結果を基にした組織全体でのコンセンサス形成が不可欠であり、そのためには分析結果をわかりやすく可視化することが重要です。講義で学んだ内容をもとに、収集したデータをEXCELで整理し、グラフで可視化する予定です。どのデータをどのグラフで可視化するかは、講義の知識を活用しつつ、基準の設定も意識しながら判断しています。

「必要 × 時間」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right