デザイン思考入門

一歩踏み出すデザインの魔法

プロセスはなぜ重要? デザイン思考は、料理と同じように順番や手順、プロセスが大切な考え方です。たとえば、IDEOが採用しているプロセスには明確なステップがあり、計画的に物事を進める点が特徴です。 顧客理解はどう進む? この考え方の流れは、まず人間中心の視点から顧客を徹底的に理解しようとするところから始まります。そして、効果的に伝えるためのビジュアライズやプロトタイピングが実践され、ユーザー、作り手、投資家にまで及ぶ共感の連鎖を生み出します。 企業支援はなぜ有効? 企業支援の現場では、従来の基本的な事業計画書の枠組みではなく、デザイン思考の進め方を採用して、実際の取り組みの中でその有用性を試すケースもあります。たとえば、あるインテリアメーカーが進める新商品の開発において、デザイン思考の視点を取り入れ、改善の可能性を検討する取り組みが行われることがあります。 資料整理はどうする? また、企業初回の支援にあたっては、メモや各種フレームワークの中にデザイン思考に関連する項目を組み込み、資料としてまとめておくことが有効です。実践に向けた準備として、自身で新商品の事例にデザイン思考を適用し、どの部分が改善できるかを検討することも大切です。 基本理解の第一歩は? このための第一歩として、まずはデザイン思考に関する書籍をしっかりと読み、基本的な概念と進め方を理解することが求められます。

データ・アナリティクス入門

仮説とデータで切り開く未来

データ分析の流れはどうなる? 講座全体を通して、データ分析の流れを構築する大切さを改めて認識しました。どのような状況から仮説を立て、どのデータセットを用いて表現するかといったストーリーを意識することができました。各種フレームワークや分析、表現の手法はあくまでメソッドであり、講座前に自学していたため、今回はそれらの手法をいかに組み合わせてゴールに近づくかが重要だと感じています。 会社での分析はどう進む? 現在、新しい会社で財務会計を担当しており、上記の資料やデータを集めながら一工夫加えた分析と仮説を展開する予定です。具体的な運用はまだ未定ではありますが、原価や経費、売上のデータ分析にも今後取り組んでいきたいと考えています。 学びの道はどこへ? 以前から学びたいと思っていた分野ですので、今後の学びの方向性として以下の点を進めていくつもりです。まず、統計学をきちんと学び上げ、社会人向けの良書や統計検定の復習を通じて知識の向上を目指します。また、今回の講座で学んだマーケティングや他の考え方とデータ分析を組み合わせるため、以前かじったマーケティングについても更に深掘りしたいと思います。 ITスキルはどう磨く? さらに、Python、SQL、データベース構築、クラウド技術など、データ分析に必要なIT分野の知識も広げる計画です。資格検定の受験も視野に入れながら、体系的に学んでいきたいと思います。

マーケティング入門

顧客の声を形にするビジネスの秘訣

顧客ニーズはどう捉える? 顧客のニーズを的確に捉えることの重要性を痛感しました。たとえばある企業では、顧客の声を反映してマスクや服装といった製品を生み出し、需要不足という問題を解決することで、良い事例となっています。このように、顧客のペインポイントをゲインポイントに変換することが重要であると理解できました。また、製品のネーミングにも工夫が求められます。顧客発想で名前を考えると、商品を認知しやすく、具体的なイメージも湧きやすくなるため、顧客自身の行動を促しやすいと感じました。 自社の強みをどう活かす? さらに、企業は自社の強みを理解し、それを活かして顧客が求めるものを提供することが大切です。競争が激しく、商品や法令が厳しい中での差別化は難しいですが、改めて自社製品を選ぶ理由や、そのメリットを細かく分析していくことが必要だと考えます。また、潜在顧客については、カスタマージャーニーを実施して、新たに分析を始めることの必要性を感じました。自社の強みについても、再考する必要があると実感しています。 顧客の行動可視化の方法は? 具体的には、顧客からのアンケートを再度読み直すことが第一歩です。次回のアンケートでは、施策や欲しい情報だけでなく、「なぜ選んだのか」といった基本的な部分も問いかけたいと思います。さらに、顧客向けのインタビューや観察を通じて、顧客の行動をより可視化し、ターゲット設定の見直しを図りたいです。

リーダーシップ・キャリアビジョン入門

指示から支援へ!リーダーの挑戦

二軸の考えはなぜ有効? 業績への関心と人間への関心という二軸で人のタイプを捉える考え方は、チームマネジメントにおいて非常に参考になりました。また、リーダーには四つのタイプが存在するとされ、環境要因(どのような仕事か)と部下要因(どのような相手か)を踏まえて、どのアプローチが適切かを判断することが大切だと実感しました。自組織のメンバーをこの二軸でプロットし、現状の業務における環境と部下の特性を言語化することで、より具体的なリーダーシップのあり方を考えられるようになりました。 指示型と支援型の違いは? 特に、指示型のリーダースタイルでアプローチしながら、徐々に支援型へと移行するプロセスが理想ではあるものの、実際に新入社員などを対象に行った場合、主体的に行動する人と受け身のままの人に分かれる傾向にあることに直面しました。後者のケースに対して決してあきらめることなく、様々な工夫を試みたいと考えていますが、その過程で心が折れそうになることもしばしばです。 規模で変わる管理のコツは? また、2~3名のチームであれば部下の特性を把握しやすいと感じている一方で、数十名規模のチームを率いる場合には、全体の把握やアプローチの見直しが必要になると考えています。このような場合、環境要因や部下要因をどのように整理し、最適なリーダーシップスタイルを選択しているのか、他の方々のご意見や経験をぜひお聞かせいただければと思います。

リーダーシップ・キャリアビジョン入門

フィードバックで未来を拓く

論理構造はどう? 評価面談のロールプレイでは、課長とBさんのやりとりを通じて、伝える内容の論理構造が非常に印象に残りました。まず、Bさん自身に振り返りをしてもらい、その過程で労いの言葉をかけることの重要性を実感しました。また、期待値とのズレを具体的な事実に基づいて共有することが、納得感を得るために効果的であると学びました。 普段の対話はどう? さらに、評価面談の場面だけでなく、普段の対話においても日々のフィードバックが大切であると感じました。小さな良かった点や改善点をその都度明確にすることで、お互いの理解や方向性のすり合わせがスムーズになります。このアプローチは、一度に多くの情報を伝えるよりも、継続的な対話を通じてエンパワメントを促す効果があると実感しました。 1on1での傾聴は? また、1on1でのコミュニケーションにおいても、相手への傾聴を重視する点が印象的でした。状況や出来事、自己の行動について問いかけながら、気づきや反省を促すことで、客観的なフィードバックがより伝わりやすくなると感じています。期待とのギャップを都度明らかにし、具体的な改善アイデアを共有する姿勢は、今後の場面でも活用したい重要なポイントです。 成長への一歩は? これらの学びを基に、今後は評価面談や1on1で、目的に沿った明確なフィードバックとフォローアップを実践し、関係者全員のエンパワメントと成長に寄与できるよう努めます。

クリティカルシンキング入門

正しい日本語の力を実感した学びの旅

正しい文章はどう作る? 正しい日本語という観点についてはあまり意識していませんでしたが、改めてその重要性に気づく機会となりました。誤字脱字やら抜き言葉、主語と述語の抜けや間違いといった明確なミスがある一方で、正解となる文章を定義するのは難しいとも感じています。これは慣れが必要な部分です。また、ロジックツリーもMECEと同様に、複数のパターンが考えられるため、目的に応じた適切なパターンを選定することが重要です。柱を立てる、対の概念を用いる、具体化するというプロセスは理解できましたが、その柱が本当に目的に適しているか慎重に検討することが必要だと実感しました。具体化の際には定量的な指標や第三者から見ても理解できる言葉で表現することが大切です。 技術意義は何だろう? 現在進めている新技術の実証実験プロジェクトにおいて、お客様から「この技術は何のために実施しているのか分からなくなってきた」というコメントをいただきました。このため、その技術の意味や意義、位置づけを整理する必要があります。今回学んだ内容は、まさにこの整理に役立つと感じたので、今後実践してみたいと考えています。 実験はどう進む? 今週は、新技術実証実験に関する技術の定義やその意義を、ロジックツリーとMECEを意識して整理します。来週には、お客様とともにこの整理した情報を用いて、新技術の価値やお客様のビジネスへの影響度合いを議論する予定です。

データ・アナリティクス入門

数字が繋ぐ学びのストーリー

分析の目的は? 分析について学んだ点としては、まず分析の目的を明確にすることの大切さを実感しました。分析は単なる数字の羅列ではなく、比較を通して意味を見出し、意思決定に役立つ結論を導き出すことが求められます。また、手元にないデータからも推測を行うことで、新たな洞察が得られる場合があること(例として、戦闘機の事例)が印象に残りました。 仕事にどう生かす? この学びを仕事に活かすため、分析に取り組む前には「なぜ分析を行うのか(Why)」、「その目的を達成するために何を分析すべきか(What)」、「どのように比較検討するのか(How)」を明確に文書化することが必要だと考えます。例えば、進行中の消費者アンケート調査では、調査の目的、分析対象、比較対象と方法を整理することが求められます。また、広告効果測定においては、分析対象が広告以外の条件とどのように整合性をもって比較できるか検討することも重要です。 報告はどう伝える? 報告時には、まずデータそのものの事実を示し、次にそこから読み取れる解釈を伝え、最終的に結論としてまとめるという流れが効果的です。一方で、営業提案用の資料作成の場面では、自社に有利な解釈ができるようデータの切り取り方に工夫が求められる状況もあります。私は分析担当として、あくまで客観的でフラットな視点からデータを伝えることを心がけているため、その点について皆さまのご意見を頂ければと思います。

クリティカルシンキング入門

問いと内省で開く成長の扉

問いの出発点は? まず最初に、常に問いを立てる姿勢が大切だと感じています。抽象的な問いをそのまま受け止めず、具体的な内容に落とし込むためには、出発点そのものを疑うことが必要です。自分が今何に答えようとしているのか、常に意識することで、無駄な情報に振り回されるのを防げると考えます。 学びは実践できた? 講義を受けたときは学んだ気になっていた部分も、実際に実践してみると忘れてしまっていることが多いと痛感しています。そこで、反復して復習し、学びを確実なものにする努力が必要だと感じました。 問いと仮説は合ってる? また、データ分析や示唆出しの骨子を作成するときは、まず何に答えようとしているのか、その問いと仮説を明確に立てることがポイントです。資料作成に熱中するあまり、本来の目的から逸れてしまわないよう、問いに立ち返ることが効果的だと思います。 フィードバックは活かせる? さらに、月次の振り返り発表では、他のメンバーの資料を事前に読み込み、フィードバックの質を上げることに努めています。普段、上位の方々との会話では迎合しやすい自分を見直し、しっかりと自分でイシューを考える意識を持つようになりました。 内省で成長中? 毎日終業前の15分間は内省の時間として、今日学んだことが実践できたかを必ず振り返るようにしています。この内省を通して、小さな気づきを積み重ね、常に自己成長を意識するように努めています。

リーダーシップ・キャリアビジョン入門

ふたつの関心軸で変わるコミュニケーション

マネジリアルグリッドとは? マネジリアルグリッドという概念について初めて知りました。「人間への関心」と「業績への関心」の2つの軸に分けて考えると、確かに理解しやすいと思います。コミュニケーションがうまくいかないと感じるときには、この関心の軸が異なっているのかもしれないと感じました。業務中はどうしても「業績への関心」に比重が大きく傾きがちかもしれませんが、私自身は「人間への関心」に寄っていると思います。両軸とも大切にしたいと感じています。 MBOにおける環境要因とは? 次に、環境要因と適合要因の視点から、直近の目標設定(MBO)でメンバーへの支援の準備を進めたいと思います。対象者の経験や知識スキルの把握、そして組織やチームの方向性や状況を整理して、その上で主に支援型のアプローチを考えていますが、達成志向型のアクションも忘れずに取り入れていきたいです。 タレントマネジメントの活用法は? 具体的なアクションとしては、まずはタレントマネジメントを活用して対象者の情報を把握します。スキルについてはある程度把握できると思われます。また、リーダー陣の会議を通して、組織の課題や方向性を理解することが重要です。組織再編があったばかりなので、この点が特に重要です。そして、定期的な1on1の機会(現在は月1回)を利用して、対象者のバックグラウンドを知り、キャリアプランを描きつつ、明確なゴール設定を目指したいと考えています。

クリティカルシンキング入門

フラットな視点が拓く未来

データの説得力は? データに基づいて論理的に導き出された方策には、数ある手法の中でも特に説得力があり、実践する際に効果が期待できると感じました。 本質はどこにある? チームで分析を進める際、議論が拡散して本来の問いを見失わないよう、得られた事実に対して丁寧に目を向けることが重要だと実感しました。実際の業務では、頭の中にある既定の原因や方策にとらわれず、フラットな姿勢でデータと向き合う意識を持つ必要があると感じています。 仮説の進め方は? また、全ての要素を網羅的に分析し、一つひとつ順番に確認する方法は非効率であるため、仮説を立てた上で優先順位を意識しながら進める手法の重要性を改めて認識しました。 満足度の裏側は? 年に一度、事務局を務める競技会の満足度アンケートを通じ、数値では明確に分解できないフリーコメントを整理・分類することで、参加者の満足や不満を体系的に把握することに努めています。その結果からイシューを特定し、真の原因へアプローチする方策を検討する意識が養われました。 チーム視点は整う? さらに、日常業務においても、チームメンバーとイシューに対する視点を合わせ、要素を丁寧に分解することが大切だと考えています。問いかけを通してメンバーの意見を引き出し、原因や方策を決めつけることなく、常にフラットな視点で課題に向き合う姿勢を心がけたいと思います。

データ・アナリティクス入門

仮説で拓く学びの冒険

仮説の定義は? 仮説とは、ある論点に対する仮の答え、または分からない事柄に対する暫定的な解答です。これには「結論の仮説」と「問題解決の仮説」の2種類があり、各仮説は過去、現在、未来という時間軸によって内容が変化します。 複数視点の意義は? 仮説を立てる際は、決め打ちせずに複数の視点から検討することが重要です。異なる切り口で仮説を構築し、各仮説に網羅性を持たせるよう意識しましょう。 問題解決の手順は? 問題解決のためには、「What(問題の明確化)」「Where(問題箇所の特定)」「Why(原因の分析)」「How(解決策の立案)」という4つのステップに沿って進めると効果的です。 仮説活用のメリットは? 仮説を正しく活用することで、各自の検証マインドが向上し、説得力が増すと同時に、ビジネスのスピードや行動の精度の向上が期待できます。これまでの経験則や直感に頼るのではなく、ゼロベースで思考し、決め打ちせずに複数の仮説を検討することが求められます。 多角的分析は効果的? まずは、3Cや4P分析を用いて多角的に仮説を立てることから始め、ヒト・モノ・カネといった様々な切り口で網羅性を意識することが大切です。実践の際には、一つの仮説に固執してデータ収集に走るのではなく、複数の視点から検証を重ねることで、比較対象との条件を同等に保ちながら分析を進め、精度の高い答えに導くことが期待されます。

データ・アナリティクス入門

比較思考で紐解く学びの極意

分析の意味は何? 「分析は比較なり」という言葉は、普段何気なく耳にするものですが、今回改めてその意味を強く感じました。データ分析において、必要な情報を集めることに注力し過ぎるあまり、単にデータを並べただけで満足してしまい、見る人によっては分析結果の捉え方に差が生じる場面があったと実感しています。動画学習では、適切な比較対象を選ぶことの重要性にも触れ、データを揃える行為は無駄ではないものの、分析の目的や見せ方を意識しなければ本来の意味での分析にならないということを認識しました。 物流の選定はどう見直す? この考え方は、物流部門における利用業者の選定や見直しにも応用できると感じます。たとえば、ある条件がある場合とない場合で、一律運賃が設定される荷主とそうでない荷主の運賃総額を比較する手法が考えられます。 大手と中小の差は? また、単純に大手業者と中小業者を料金面で比較するのではなく、企業の規模や対応する配送範囲が同様である業者同士で運賃を比較することが、より適切な分析につながると理解しました。 比較対象の妥当性は? さらに、自分が揃えたデータが本当に比較に適したものかどうか、常に振り返りを行うことが大切です。普段利用している輸送業者に注目し、過去の実績が明確な業者だけを比較対象にしている現状を見直し、新たな業者や新しい地区の業者も検討することで、より多角的な視点を持つことができると感じました。

「大切」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right