クリティカルシンキング入門

学びが未来を変える瞬間

どう伝わる? 良い文章やグラフ、スライドには、「相手にどう伝えるか」という視点が徹底されている点に共通性があります。タイトルだけで内容が想像でき、リード文で次の部分を読みたくなるよう工夫されています。重要なポイントがずれることのないよう、余分な情報を削ぎ落としてシンプルにまとめることも大切です。また、必要な説明を削る際には、伝えたい本質をしっかり理解している必要があり、単に自分の思いや伝えたいことだけではなく、受け手がどのように受け取り、解釈し、行動に結びつけるかを意識することで、より伝わる内容になると感じます。 相手はどう感じる? お客様に合わせた情報提供では、重要な部分に優先順位をつけ、メリハリを効かせたつもりですが、その理解度は後日の会話で確認しようと思います。社内メールや電話でのやりとりにおいては、結論から先に述べることで迅速に大事なメッセージを伝える努力を重ね、視覚面でもフォントや配置など工夫していきます。他部署との打ち合わせや会議においては、話を短くまとめ、相手の視点に立った要点を明確にすることで、「相手を思いやる」姿勢を常に心がけたいと思います。

リーダーシップ・キャリアビジョン入門

上司の夢が拓く未来のカタチ

上司のビジョンはどう? 上司が明確なキャリアビジョンを持ち、そのビジョンを部下に共有することが、フォロワーを形成する上で非常に重要だと感じました。また、AI学習を通じて、自分の仕事に求める価値観が途上国のインフラ整備だけでなく、貧困層の生活改善にも大きく寄与していることが分かり、驚きを覚えました。以前から漠然と貧困層への貢献を望んでいたものの、その比率が意外と高いことに新たな気づきを得ました。 現場の役割はどう考える? 現在従事しているインフラの仕事において、貧困層に利益をもたらすような設計や施策を検討しようと考えています。担当職には環境社会配慮の役割があり、インフラ整備によって生活に影響を受ける方々への説明や調整を行っています。そのため、関連分野のレポートも積極的に読んで知識を深めたいと思っています。 経験から何が見えてる? 私は社会人歴が約15年ですが、これまで上司のキャリアビジョンを直接聞いたことがありません。他の方々は上司のキャリアビジョンをどのような状況で聞かれたのでしょうか。その際、どのように感じられたのか、ぜひお聞かせいただきたいです。

クリティカルシンキング入門

伝わる!分かりやすい資料作成の秘訣

相手への伝え方は? 相手に伝えるためには、文章や日本語だけでなく視覚的な情報の見せ方も非常に重要だと実感しました。自分の伝えたい内容を明確に把握した上で、その意図に沿った文章と資料を作成することが、正しく情報を伝える鍵だと感じます。 視覚表現の工夫は? また、情報を詰め込みすぎず、簡潔に伝えるために色やフォントなどの視覚的要素にも気を配る必要があります。分かりやすい資料作りを心掛け、無駄な装飾を避けながら、伝えたいことが明確に伝わるような工夫を続けたいと思います。 計画策定の流れは? 現在、8月末までに、他部書向けの中長期利益計画の策定に伴う説明資料を用意する必要があります。その際は、順序立てた説明の流れと、伝えたい内容やコンセプトが相手にしっかり伝わるように、構成を意識して進めていきたいと考えています。 資料作りのポイントは? さらに、自分が理解しやすい資料作りの工夫について、どのような点に注意しているのか、他の方の意見も伺いたいです。資料作成時に、例えば1ページあたりの伝えたい情報の数など、具体的な工夫があればぜひ教えていただけると助かります。

データ・アナリティクス入門

平均だけじゃないデータの真実

データ比較は何が目的? データ分析において、比較は重要な手法です。たとえば、単純平均は代表的な指標ですが、これだけでは散らばりの情報が反映されず、重要なデータが見逃される危険性があります。そこで、標準偏差や中央値など、状況に応じたさまざまな指標を併用することで、より正確な分析が可能となります。また、グラフ化することにより、傾向を把握しやすくなり、新たな仮説を立てやすくなるという利点もあります。 サイト指標をどう考える? Webサイトにおける各種指標の検討でも、従来の単純平均だけでなく、データのばらつきを反映させる標準偏差の計算や、グラフを用いたビジュアル化が重要であると考えられます。こうした手法によって、これまで気付かなかった仮説を発見する可能性が広がります。 仮説検証はどう進む? 現在実施しているWebサイトのデータ分析についても、今回学んだ各種指標を活用し、改めて平均値の計算やヒストグラムによる可視化を行います。その上で、従来の仮説が成立しているかどうか、また新たな仮説が導き出されるかを検討し、反復的な検証により、より多角的な分析を進めていく予定です。

リーダーシップ・キャリアビジョン入門

キャリア軸再確認で挑む成長

キャリアアンカーの重要性は? キャリアアンカーについて学んだ内容が印象に残っています。各人がどの事柄に重きを置くかは異なるため、モチベーションを高め維持するために必要な情報や条件について、しっかりとコミュニケーションを取ることが求められます。 内面の成長を促すのは? また、自身の内面を見つめ直すリーダーは、自然とリーダーシップを発揮しやすいと感じます。リーダーとして従業員のモチベーションを維持する役割だけでなく、自身のキャリアアンカーを再確認することで、より高い成長意欲が生まれると実感しました。私は純粋な挑戦心と自己決裁範囲の拡大を重要視しており、現状の職場では成長の余地が限られているため、職場外での活動にも目を向け、情報収集を行っています。 面談が生む気づきは? さらに、個別の面談を通してキャリアアンカーに関する意見を聞くことは大切です。限られた時間の中で、提供可能な条件や仕事から得られる経験を明確にし、それを公表して聞き取りを行うことで、各人のキャリアアンカーを大別できると考えています。仕事においては、目標の共有と進捗の管理が重要なポイントとなります。

クリティカルシンキング入門

立ち止まり、疑問を力に変える

どう深堀りすべき? 分解のプロセスでは、目に見える事実だけに当てはまらず、常に疑問を持って深堀りすることが、課題の本質を把握する上で非常に重要であると理解しました。実際の業務ではスピードが求められるため、予想通りのデータが出ると次のステップへと急ぎがちですが、一度立ち止まって、より深く検証する姿勢を大切にしていきたいと思います。 真実をどう捉える? また、品質不具合や設備のトラブルにおける再発防止の取り組みにこの分析を活用しています。結論ありきの報告が多く、グラフの見方などを深く疑っていなかった点に気付きました。今後は、別の切り口から事象を捉えることで、これまで見過ごしていた現実を明らかにできないかという問いを持つように努めたいと考えています。 原因究明の本質は? 過去の経験から、品質不具合や設備トラブルの原因を掘り下げることで、根本原因が共通しているケースが多いと感じています。特に、ある地域では、事象の特定は得意である一方、原因究明が軽視されがちな傾向があるため、日々の業務の中でさらに踏み込んだ分析を実践し、原因究明の体質を根付かせたいと再認識しました。

リーダーシップ・キャリアビジョン入門

状況別!柔軟マネジメントの実践術

どの管理法が効く? 指示型、参加型、支援型、達成志向型といったマネジメントスタイルがあり、部下の能力や状況に応じて使い分けることが大切だと感じています。個人的には、主に指示型と参加型を活用しているという印象です。一方、リーダー層に対しては、自立を促すために支援型や達成志向型のアプローチが必要だと思います。 打合せはどう選ぶ? また、対顧客、リーダークラスとの打合せ、プロジェクトメンバーとの打合せ、1ON1など、会議の内容や参加するメンバーが異なるため、状況に合わせた手法の使い分けが求められます。特に1ON1では、メンバーそれぞれの性格に合わせて配慮することが重要だと考えています。 どの手法が最適? 具体的には、プロジェクトなど様々なメンバーが参加する打合せでは、指示型のアプローチを基本としたいと考えています。リーダークラスの会議では、参加型を取り入れて各自の自立心を引き出すことが効果的だと思います。そして、対顧客との打合せや1ON1では、指示型、参加型、支援型を状況に応じて使い分けることで、より良いコミュニケーションが実現できるのではないかと感じています。

データ・アナリティクス入門

学びを視覚化!分析新手法の魅力

原因の仮説ってどう考える? 原因の仮説を考える際、思考の幅を最大限に広げることが重要だと実感しました。また、「問題に関係がありそうな要素」と「それ以外」という対概念を活用する考え方は、比較の観点からも非常に有用であったと感じています。講義で「分析は比較である」と最初に言われたことを思い出し、理解を深める手助けとなりました。 分析手法は何が新しい? プロセスウォーターフォールという、これまで自身で作成したことのなかった分析手法に触れることができ、今後の業務にも取り入れていきたいと考えています。業務上このような図を目にする際には、どのような観点で分析が行われているのかを意識して見るよう努めたいと思います。 視覚化で伝わるの? また、ファネル分析による絞り込みについては、これまでも暗黙的に業務で活用していた部分がありました。しかし、他者とのコミュニケーションにおいて、自分のイメージが十分に伝わっているかどうか不安に感じるため、今後はファネル分析やプロセスウォーターフォールといった手法を視覚化しながら議論を進めることを自分に推奨していきたいと思います。

クリティカルシンキング入門

学びを深めるナノ単科の魅力

どうやって主張する? 自身の主張を説明するときには、相手が関心を持ちそうな話題に繋げて理由を説明することが重要です。文章を書きながら理由を整理することもよくありますが、まずはピラミッドストラクチャーを用いて、主張したいこと(結論)、その理由、そのさらに具体的な根拠といった順で考えを進めることが大切です。 結論、先に伝えてる? 例えば、相手を説得するときやメールを書くとき、問題解決を図る際、あるいは決済申請を行うとき、そしてチャットで何かを伝えるときには、まず最初に結論を述べ、続けてその理由を説明します。伝えたい「結論」を一番初めに伝えることが重要です。 チャットで伝えるなら? 特に、チャットで連絡を取る際には、伝えたい内容を最初に示すことで理解が進みます。例えば、「◽️報告」や「◽️相談」といった見出しを活用することも検討に値します。 論理展開、見直してる? 論理的に理由を付ける際は、必ずピラミッドストラクチャーを用いるようにしましょう。この方法を使えば、どういった論理に基づいて結論を導いたのかを視覚的に確認し、思考の妥当性を高めることができます。

アカウンティング入門

数字で企業戦略を読み解く

P/Lの基本って? P/LやB/Sの基本的な知識を学び、そのつながりを理解することができました。P/Lにおいては、企業がどのように利益を上げ、どこに費用をかけているのかが明確になり、売上増加の仕組みが見えてきました。 B/Sは何がわかる? 一方、B/Sは資金の収集方法と使い道が示されており、企業の財務基盤の構造を理解することで、長期的な安定性についても分析することができると感じました。企業の売上構造や事業の仕組みは、財務諸表に色濃く反映されていることがわかりました。 未来はどう予測? 今回の学びを活かして、今後はさまざまな企業の動向を分析し、業界の未来の姿を考察していきたいと思います。同じ業界内でも企業ごとに異なる事業戦略が展開されていることから、財務諸表の変遷を通じて、今後伸びる事業が見えてくると考えています。 多角的視点の意義は? また、アカウンティングの観点だけでなく、マーケティングや経営戦略といった他の視点も取り入れ、多角的に企業を考察することが重要だと感じました。これからも幅広い知識を習得し、より深い分析ができるよう努めていきたいです。

データ・アナリティクス入門

平均値だけじゃ見えない真実

データはどう活かす? データは単に眺めるだけでは意味がありません。他のデータと比較することで初めてその意味が明らかになります。また、数値化やデータの加工を行うことで、より多くの情報が見えてきます。代表的な統計量を見ることで全体の傾向を把握できるものの、平均値だけではデータのばらつきを捉えきれないため、標準偏差の確認やグラフ化によって視覚的に捉えることが重要です。 グラフ作成はどう選ぶ? 多くの数値データを扱う際には、経時変化を示すグラフを活用することも大切だと感じます。ただし、複数の要素が存在する場合、どの部分をグラフ化するかの選択は慎重に行う必要があります。あらかじめ目的に沿った問題箇所を整理し、具体的にどの要素が有効かを明確にした上でグラフ化する習慣を身につけたいと思います。 数値の裏側を探る? 業務でデータを加工したり、調査を行う場合、平均値が頻繁に目に入りますが、その数字の背後にあるばらつきを意識することが欠かせません。単純な数字に惑わされず、加重平均や幾何平均といった他の代表値も適切な場面で選択できるように、知識を深めていきたいと考えています。

データ・アナリティクス入門

仮説が導く学びの扉

仮説の役割って何? 「仮説」を立てる重要性を再認識しました。特に、3C(顧客・競合・自社)や4P(製品・価格・場所・プロモーション)といったフレームワークは、網羅的な仮説形成に有効であると実感しています。これまではあまり意識せずに活用してこなかったため、今後は欠かさず取り入れていこうと考えています。 従来方法の問題点はどう? 従来は、実績ベースで特徴や傾向を把握し、その後に仮説を立てる方法で業務を進めていました。しかし、その方法だと仮説が固定的になり、複数のパターンを検討できなかったり、現状にないデータへの仮説が立てられなかったりするというデメリットを改めて感じました。 新たな仮説の進め方は? そこで、今後はデータを見る前に課題に対して仮説を書き出すことから始めます。その際、3Pや4Cといったフレームワークを利用し、生成AIなども活用して個人のバイアスを抑えるよう努めます。検証段階では「WHERE」「WHY」「HOW」といった観点から複数パターンの仮説を立て、それらをデータとして記録し、「仮説→検証→結果」というプロセスを確実に回していきたいと思います。
AIコーチング導線バナー

「重要」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right