データ・アナリティクス入門

データ分析の基礎から見直す重要性

比較対象を誤解することの影響は? 分析の基本は比較にあります。特に、比較する対象が「類似性の高いもの同士(Apple to Apple)」であることを意識する必要があります。これまで自身で行ってきたデータ分析において、その認識が誤っていたと感じました。しばしば「異なるもの同士(Apple to Orange)」を比較しようとしていたことに気づいたのです。 データ作成の目的を明確にするには? また、データ作成の際には、まず「目的」を明確にすることが重要であると学びました。ライブ授業で問題に取り組んだ際、大切なポイントを見落としていたことがありました。今後、データ分析を行う際には、まずその分析の目的を再確認し、その上で分析を進めていきたいと思います。 仮説を線で考えることの重要性 さらに、仮説立てに関しても、全体像を広く理解し、点ではなく線で考えることが重要です。これにより、いくつかの仮説をより具体的に報告できるよう努めたいと思います。特に、SEOに関わる数値分析や会員登録までのユーザー動線の見直しに活用できると感じています。 効果的なデータ分析方法とは? データ分析の目的としては、以下の点に注意したいと考えています。 ・さまざまなタイプのデータの特性と、陥りがちな分析の落とし穴に注意する。 ・定量データを用いた分析の重要性を認識し、その活用を図る。 比較と改善のためのディスカッションの重要性 最近は、コンペティターのメディアとの比較や、ユーザー登録導線の参考メディアやランディングページと自社サービスの比較を十分に行えていませんでした。これを改善するため、チームメンバー全員でグループディスカッションを行い、検証結果を導き出す方法を取りたいと思います。

クリティカルシンキング入門

伝わる文章を書くための鍛錬術

書くことで思考力を鍛えられる? 「言葉を書くこと」自体が思考力を鍛えることに繋がることを学びました。具体的には、①言葉の選択、②順序の整理、③概念の整理が必要だと感じました。 相手に伝わる言葉遣いとは? 言葉を書く際には、主語と述語を強く意識することが大切です。日本語の特性上、主語や述語がなくても言いたいことが相手に伝わりやすいですが、それでも相手が内容を理解するために労力をかけている可能性があります。したがって、相手の立場に立って丁寧な言葉で伝えることが重要だと学びました。 文章コミュニケーションの増加 仕事の中では、電話よりも文章でコミュニケーションを取る機会が増えています。これにより、文章にする機会が過去に比べて大幅に増加しました。 より伝わる文章作成のポイント 今後、より伝わりやすい文章を作成するためには工夫を怠らず、次の点に注意します。 ・社内チャットを利用する際には、送信前に主語と述語が入っている文章かどうかをチェックします。 ・資料作成時には、相手を想像し、短く端的に伝える書き方を意識します。 ・報告や連絡、相談時には、思いついたまま言葉を発さず、まずピラミッドストラクチャーの図をイメージすることが大事です。具体的には、伝えたい明確な理由を最初に考え、根拠に繋がる事象を複数思い浮かべます。 ・言葉を発する直前には論理を整理し、ピラミッドストラクチャーを頭でイメージしてから言葉を発します。 ・文章生成時には、業務連絡や上司への業務進捗の報告など、あらゆる場面で「伝わる」を意識し、長文になりそうな場合はマークダウン形式を活用します。 提案方法を実践するには? これらの方法を実践し、伝わりやすいコミュニケーションを目指します。

データ・アナリティクス入門

共通認識が導く納得の意思決定

なぜ納得できない? これまでのGAiLでは、解説を読むたびに納得感を得られる部分が多かったのですが、今週はどうしても納得できない点がありました。設問3のデザイン変更の方法案について、解説では「コスト」「スピード」「意思疎通」に点数を付け、その結果として最適なものは「案3」とされていました。しかし、私が認識していた各指標の点数が異なっていたため、別の案を回答してしまいました。 共通認識は必要? この経験から、意思決定支援を行う際には、分析結果に基づいて「How」を考える前提として、共通認識(認知の歪みがない状態)を持つことが非常に重要だと感じました。たとえ分析結果から具体的な手法が導かれたとしても、共通認識が欠けていれば相手に納得感を与えるのは難しく、実際の実行段階で問題が生じる可能性があります。そうした意味で、仮説をしっかりと研ぎ澄ますことが大切だと理解しました。 A/Bテストはどう見る? A/Bテストについては、ダイレクトリクルーティングにおけるスカウト送付の場面で有用と考えています。たとえば、①スカウトメールの件名、②本文、③添付の求人票といった要素で比較検証を行う方法が挙げられます。一方で、各グループ間の介入の違いはできるだけ絞る必要があるため、比較対象が不必要に増えないよう、明確な仮説に基づいて取り組むことが求められます。 どう候補者を絞る? また、ほとんどの場合、データサイエンティストという職種名で求人票が作成され、スカウトメールが送付されているため、まずは候補者を①データサイエンティストとしての経験の有無と、②データサイエンティストを希望しているかどうかの2点で分類し、返信率への影響を検証していきたいと考えています。

クリティカルシンキング入門

ピラミッドで磨く伝わる文章

正しい日本語は大事? 分かりやすい文章を書くためには、正しい日本語の使用が大切だと改めて感じました。日本語は主語を省略できるため、意図が伝わりにくくなることがあります。このため、自分が発信する際には、主語などの基本的な要素を明確にするよう心がけています。 手癖を直すには? また、文章作成時に手癖で書いてしまいがちな点を見直す必要を感じています。まずは、文章を書く前にしっかりと考えを整理する時間を取ることで、より論理的で伝わりやすい文章が生まれると思います。 文章整理のコツは? 文章を整理するためのコツとしては、まず主張に沿った適切な理由を選び、浮かんだ理由をグループ分けして整理する方法が有効です。さらに、ピラミッドストラクチャを意識することで、結論、その支柱、理由、そして具体例という流れで思考を深めることができ、読者に伝わりやすい文章が作成できると実感しました。理由を複数挙げ、対比を意識することで、MECEの考え方も活かせると感じています。 難関依頼はどう対処? 今回の学びは、問い合わせメールへの回答にも大いに役立つと考えています。たとえば、お客様から仕様上実現が難しい依頼を受けた際、できない理由を明確に伝えるために、まず伝えたい事項を整理し、結論(依頼は受けられない)、その理由、さらに具体的な根拠という流れで説明する方法を実践していきたいと思います。同様に、チームメンバーの文章チェックにおいても、この手法が有効です。 社内表現を磨くには? 社内での文字コミュニケーションにおいても、ふわっと内容を伝えるのではなく、ピラミッドストラクチャを意識して論理的に整理し、明瞭かつ具体的な表現を心掛けていきたいと考えています。

リーダーシップ・キャリアビジョン入門

リーダーシップでチームを育む方法

リーダーシップをどう育むか? 仕事を任せることは、リーダーシップを発揮する上で極めて重要です。まず、自分に余裕を持ちながら、相手を理解するための努力が求められます。具体的には、観察や柔らかい雰囲気での対話を通じて、相手の本音を引き出すことが重要です。こうしたコミュニケーションを通じて、適切な仕事を任せることで、メンバーの成長とやる気を引き出すことができます。単に仕事を丸投げするのではなく、メンバーが自律的に動けるよう環境を整え、問題点を自分で見つけ、必要なスキルを開発する機会を提供することが大切です。 新しい期間の始まりに備えるには? 新しい期間が2月から始まります。チームミーティングでは、組織のビジョンや課題、目的、目標、方向性を丁寧に伝え、各メンバーが自分の目標を設定できるように支援します。Hさんには、目標設定が曖昧にならないよう6W1Hを意識するよう促します。Yさんには、数字だけでなく制度の見直しや業務改善の重要性を伝え、理解を深める時間を設けます。Oさんには、少し背伸びすれば手が届く目標を設定できるよう支援します。Sさんには、新しい仕事の意義や担当する理由を説明しつつ、本人の意見を聞きながらコミットメントを高めていきます。 メンバーの目標設定を成功させるには? 余裕を持つことも重要です。リーダー1年目は業務に追われ、思うようなマネジメントができませんでした。そのため、メンバーの目標計画を立てる前に1on1を実施し、彼らの本音を知る機会を作ります。仕事を任せる意義や目的を納得いくまで伝え、その上でメンバー自身に目標シートを作成してもらいます。こうしたプロセスにより、メンバーは自ら設定した目標に対する達成意欲が向上し、コミットメントが高まります。

クリティカルシンキング入門

データ分析で視野を広げる学びへの旅

データ分析の手法とは? データを見る際には、単に与えられた数字を眺めるだけでなく、自らデータに触れて比率などの必要な情報を引き出し、グラフ化することで、複数の視点から分析することが重要です。こうしたアプローチにより、データを多角的に捉えることができます。 MECEで現状を把握するには? データを分解する際は、MECE(Mutually Exclusive and Collectively Exhaustive)を意識することが大切です。同じ内容を繰り返すことなく、全体を漏れなくカバーすることで、現状を正確に把握できます。 具体的な分析の例は? システムや業務の分析では、具体的な例として航空券の購入フローや空港での搭乗フロー、整備フローなどを分解して考えることが挙げられます。また、売り上げ分析では、路線別や年齢別、搭乗回数別に分解してみることも効果的です。 業務に応用できるか? これらの手法は日常業務でも活用可能です。例えば、システム障害発生時の対応やアクセス数のデータ分析、WEBサイトへの攻撃分析といった場面でも役立ちます。 テンプレート活用の効果は? さらに、切り口のテンプレートを作成すると便利です。例としては、航空券購入から搭乗後までのプロセスを旅客の視点や業務の視点で分類することが考えられます。また、研修アンケートの分析にもこの方法を応用できます。受講前には思いもよらなかった角度からデータを切り分け、Tableauといったツールの活用も視野に入れると良いでしょう。 新たな視点が発見を生む? 日常業務においては、失敗を恐れずにデータを分解し、新たな視点で見ることがスタート地点です。こうした姿勢が新たな発見につながります。

データ・アナリティクス入門

ABテストで効果を最大化する方法とは?

問題解決ステップの理解をどう深める? 問題解決の4つのステップについて学んだ中で、特にWhy(原因分析)とHow(解決方法の立案)、そしてその手法としてABテストについて理解が深まった。ABテストはシンプルで運用や判断がしやすく、低コスト・低工数・低リスクで実行可能なため、非常に活用しやすい。実施の際には、目的設定、改善ポイントの仮説設計(何でも変えるのではなく、意図を持って比較しやすくする)、実行(十分なデータ量を確保)、結果検証の流れが効果的である。ただし、Web広告の場合には時間帯や曜日、プラットフォームなど他の条件が異ならないように注意が必要だ。 ABテストで問題解決の精度を高めるには? さらに、ABテストは「データ分析を通じて問題解決の精度を高める(Check)」と「仮説を試しながらデータを収集し、よりよい問題解決につなげる(Act)」を迅速に行うことができるため、非常に効率的だ。 例えば、メルマガでイベント告知を行う際にABテストを活用すれば、それぞれ訴求する内容を変えて、どの訴求ポイントが効果的かを検証することができる。しかし、解決案をひとつに絞るのは良くないので、SNS投稿など別のアプローチも併用して検証する必要があるだろう。 問題解決の全体像を把握するには? これまで、ランディングページ(LP)作成や広告を打つ際、一度行ったABテストの結果に満足して長期間使用していたことを反省。常に仮説を持ち、様々な角度から検証して改善していくことが必要だと感じた。また、問題解決の4つのステップ(What→Where→Why→How)の順番を意識し、単に解決策を考えるだけでなく、その全体像を把握することにリソースを費やすことを心がけたい。

クリティカルシンキング入門

試行錯誤から生まれた分析の智恵

データ加工の秘訣は? データの加工においては、分布の見え方が刻み幅によって大きく変わることを実感しました。一部の刻みやすい部分だけに頼らず、あらかじめ仮説を立てた上で様々な試行錯誤を行いながら加工することが重要だと感じています。また、加工結果を伝える際には、グラフなど視覚的な資料を用いて相手の注意を引く工夫が必要だと学びました。さらに、MECEの手法として、層別、変数、プロセス分解という大きく3つの方法があることも新たな発見でした。 プラン策定の視点は? ビジネスプランの策定にあたっては、まず対象期間を明確に定義し、その期間内に成長する領域をあらゆる角度からMECEの観点で分解することが効果的だと考えます。仮説を基に分析を進めると、具体的なポイントが見えてくるでしょう。特に、層別の分解では、単に分かりやすい切り口を選ぶのではなく、意図を持った切り口にすることで、伝えたい内容をより明確に伝えることができ、相手に納得してもらいやすくなります。また、会社から得られる数字だけに頼らず、必要な要素を漏らさず情報を収集する姿勢も重要だと感じました。 レポート作成の狙いは? 日々のレポート作成や本質を押さえたアクションを行う際には、まず要素を思い描き、書き出すこと。そして、分解し、他の切り口がないかを常に考え直すことで、ポイントを簡潔かつ分かりやすく伝えることができると実感しました。 工夫の実践例は? 加工や切り口の工夫は、経験や場数、センスが求められるものです。実際の業務でどのように活かされているのか、または自分自身や家族における意思決定の場面で役立っている事例についても知ることができれば、さらなる学びにつながると感じています。

クリティカルシンキング入門

対話と振り返りで磨く思考術

偏りに気づいた瞬間? 思考に偏りがあると指摘された直後にも、ついいつもの偏った考え方に戻ってしまう自分を実感しました。こうしたクセの根強さを肌で感じ、一筋縄ではいかないと分かりながらも、あきらめずに地道なトレーニングを継続する工夫をしていきたいと思います。 頭の使い方はどう? 人間は偏りがちであるため、頭の使い方を知識として学び、実戦で使えるようにトレーニングすることが大切だと改めて感じました。効率的な思考を身につけるためには、自分の考え方を客観的に見直す習慣が必要です。 対話で視点変わる? また、偏りをなくす一つの方法として、他者との対話を取り入れることに納得感を覚えました。今後は、一回一回のコミュニケーションを大切にし、苦手意識を克服するために積極的に対話の機会を作っていきたいと考えています。 講座で学んだことは? この講座での学びは、クライアントとのコミュニケーション、議事録作成、提案書やデザイン提案、画面要件検討、掲載項目定義、要求定義、レポート作成といったさまざまな場面で役立つと確信しています。 行動の鉄則は何? 具体的な行動としては、まずクライアントが話す背景を想像し、思考の偏りがないか、また他の観点から見るとどうかを常に確認していきます。発言する前には「なぜ?」や「本当に?」と自問し、十分に考えた上で発言するよう努めます。さらに、提案準備の際には提案ストーリーのつながりや、情報の抜け漏れがないか、問題解決に直結する切り口になっているかなど、資料やストーリー全体をチェックします。加えて、他者からのフィードバックを積極的に取り入れ、偏りを修正するための工夫をし、客観的に振り返るための記録も継続的に行っていきます。

クリティカルシンキング入門

データ分析で得た新しい視点を育む旅

多角的な分析って? 数字やデータの分析においては、多様な視点での切り口が重要です。どのように分けるべきか迷うこともあるかもしれませんが、迷うよりもまずは様々な方法で分けて可視化してみることが大切です。特徴が見えない場合もありますが、それはその分け方が適していないと学ぶ機会です。特に、MECE(漏れなくダブりなく)を意識して切り分けることで、より正確な分析が可能になります。まず全体像を把握し、MECEを意識した分解を行うことが効果的です。 次回の展開はどう? 現在はコンテンツ開発の時期ではないため、データ分析の機会は少ないですが、次回のコンテンツ開発時には過去のアンケート結果を様々な角度からMECEを意識して可視化することで、新しいコンテンツ開発に役立てたいと思います。また、別の企画での社内研修を考えており、参加者のアンケート結果を活用して次年度の研修内容をどのように改善するかを考える際にこの方法を活用したいと考えています。さらに、アンケート作成時に何を質問すべきか考える際にも役立つと感じています。 可視化の工夫は? 具体的には、以下の方法を試みようと思います。まず、様々なデータを見つけられる限りの切り口で分けて可視化すること。そして、データをエクセルに取り込み、パーセンテージ表示やグラフ化を行い可視化して確認する習慣を身につけることです。さらに、常にMECEを意識し、モレやダブリがないか確認しながら進めることが必要です。 振り返りの学びは? 過去に分析したアンケートデータをもう一度見直し、得た知識をもとに新たな視点で見てみることも重要です。こうした取り組みを通じて、データの見え方の違いを体感し、今後の分析に活かしていくつもりです。

マーケティング入門

ターゲット再分析で広がる提案の可能性

ターゲティングの再認識をするには? ターゲティングの重要性について再認識しました。現在の業務では、ターゲットが漠然と決まっていることが多く、そのため提案を作成する際にもそのまま進めていましたが、ターゲットを明確にし、他の切り口からも考えていくことで、提案の幅を広げることができると感じました。 フレームワークはどう活用する? また、ポジショニングマップの活用についても理解が深まりました。提案書作成時にフレームワークの重要性を再確認し、特にポジショニングマップを使うことで伝えたい内容をわかりやすく、より効果的に伝える提案ができると学びました。現在作成中の提案書にこの方法を取り入れて実践しています。 新規業務での提案の工夫は? 新規業務の提案書作成においても、早速ポジショニングマップを作成し、提案の重要なポイントを絞り込んでいます。以前は提案内容が多岐にわたってしまうことが多かったのですが、ターゲットの再分析とポジショニングマップを用いることで、セールスポイントを明確に絞ることができるようになりました。 新市場開拓で見えてきたこと 新しい市場開拓に向けた自社サービスの提案を進めている中で、当初想定していたターゲットとは異なる切り口でも再分析することで、新たに提案できる内容が見えてくるのではないかと考えました。早速チームで共有し、意見を求めることにしました。 チームと成果を共有する方法 現在の提案書作成活動では、ポジショニングマップを取り入れ、チームメンバーにも共有することで、セールスポイントの洗い出しや、重要なポイントの確認に役立てています。ターゲティングについてもメンバーと意見交換し、次回のミーティングまでの課題としています。

データ・アナリティクス入門

データ分析の本質を学ぶ喜び

分析手法とは何か? 分析とは比較を通じて行われ、仮説を立てた後にデータを収集・加工することで得られる気付きが重要なプロセスです。定量分析の視点としては、インパクトの大きさ、ギャップ(差異)、トレンド(変化)やばらつき(分布)、パターン(法則)を考えることが重要です。データの代表値として単純平均、加重平均、幾何平均などを使い、ばらつきを見るためには標準偏差をとらえる方法が有効であることが分かりました。また、データを扱う際には、加工してビジュアル化することで一目で理解できるグラフを作成することも重要なプロセスです。 データの特異点をどう見つける? データ分析ではまず平均値を考えがちですが、データの散らばりから特異点を見つけることも重要だと分かりました。そのため、業務(調査系)で平均値のデータを参照する際は、背景に注意し、表面上の見栄えに騙されないよう気を付けたいと思います。また、実証実験で扱うデータについても、属性ごとのデータを無作為に取って平均値を出すのではなく、何と比較するのかを念頭に置き、そのデータで何を伝えたいのかを考慮してデータ分析の設計を進めたいです。今週のGailで学んだように、グラフには特性があり、自分の伝えたいデータをどのようなグラフを使って表現するかを慎重に検討することが重要です。 幾何平均やグラフをどう活用する? 今回学んだ幾何平均は耳慣れない単語だったので、自分でもう少し調べてみたいと思います。また、エクセルなどでよく使うグラフごとの特性について詳しく調べ、どんな場面でそのグラフを使用すべきかを理解できるようにしたいです。今回の学びを定着させるために、実証実験でデータ取得を検討しているメンバーに共有する予定です。
AIコーチング導線バナー

「作成 × 方法」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right