データ・アナリティクス入門

仮説検定で見える本当の事実

データ比較の工夫は? 定量分析に取り組む中で、表面的な分析だけではビジネスの現場で活用できないという事実を改めて認識しました。より効果的な仮説検定を行うためには、どのデータと比較するかを十分に考える必要があると痛感しました。 複数比較のメリットは? たとえば、ある一社のデータに依存するのではなく、複数の企業のデータを並行して比較することで、検定の信頼性が高まります。また、売上高の分析に際しては、単に売上の低下を把握するだけでなく、その原因を探るために仮説を立て、実際に仮説検定を実施するプロセスが重要だと感じています。 情報共有の秘訣は? さらに、普段の情報共有の場においても、前年同月比だけでなく、業種別や地域別の視点で分析を行い、得られた知見をアウトプットする工夫が求められると学びました。 相関関係の本質は? 今後は、相関関係に関する知識をさらに深めるため、より詳しい方の意見をお伺いできればと考えています。

戦略思考入門

効率化で時間と売上を生み出す秘訣

経営戦略で何が変わったのか? 現在の会社では、経営戦略の活用により無駄な作業が著しく減ったと感じます。以前は同じ内容を複数の書類に記載するなどの二度手間が多かったですが、今は減らせる作業をどんどん減らしていっています。それにより、顧客への準備時間が確保でき、売上にもつながっています。 仕組み化のメリットとは? 仕組化することも有効だと考えます。例えば、講演会の開催においては、個人によって準備や開催の方法、フォローの取組が様々ですが、最も効率的な方法をチームで検討して仕組化することで、抜け漏れの確認が容易になります。そして、全員が最も効率的な方法を実行できるようになるメリットがあります。 どう仕組み化を進める? この仕組み化を実際に試してみようと思います。まずは、チームの個々の講演会のやり方を聴取し、最短で効果的な方法を抽出します。その後、数人で実施し、検証しながらブラッシュアップしていくことで、最終的に仕組化したいと考えています。

データ・アナリティクス入門

外れ値も味方にする分析学

外れ値は見逃す? 物事の状況を平均値だけで捉えると、外れ値が見落とされる可能性があることを再認識しました。今後は状況に応じて、加重平均などほかの指標も使い分けることで、状況を正確に把握し、適切な課題設定ができるよう実務でも意識して取り組んでいきたいと考えています。 多様な平均手法は? たとえば、複数製品の売上分析では、直近数年間の成長率を示す場合に幾何平均を用いたり、製品ごとの優先順位や活動量を反映させた分析には加重平均を使用するなど、さまざまな手法を状況に合わせて活用できると感じました。また、分析結果の提示には適切なグラフを用い、周囲への効果的なアウトプットを目指す一連の流れが形成できると実感しています。 標準偏差は役立つ? さらに、標準偏差は大量のデータを扱う際に有用だと印象づけられましたが、どの程度のデータ量であれば効果的に機能するのか、また他の分析手法との使い分けについても、今後さらに掘り下げて考察してみたいと思います。

アカウンティング入門

業界別損益計算書の秘密に迫る

損益計算の変化は? 事業のコンセプトが違うと、損益計算書の構造が変化することを学びました。特に印象に残ったのは、最後の動画で自動車業界とクラウドサービス業界の事例を見たときです。これらの業界では、売上原価率が低くても販管費率が高くなることがあり、事業構造や企業の成長段階によって一概には判断できないことが明らかでした。 費用の偏り、知りたい? 私は特に、売上原価や販売費および一般管理費のどちらに費用が偏っているのかを知りたいと考えています。そのために、各業界の状況を考慮しつつ、関連する事業構造や費用構造を仮定し、現在支援している顧客企業の分析に活かしたいと思っています。 営業戦略はどうする? 具体的には、売上原価率や営業利益率、販管費率などについて、なぜ業界よりも高いのか低いのかを想像し、顧客企業に質問してみます。そして、会社の先輩方に相談しながら、業界や職種ごとの特徴を理解し、営業や提案の際に活かせるようにしたいです。

アカウンティング入門

数字で見える!経営の新たな視点

損益計算書の基本的な読み解き方を学ぶ 損益計算書の基本的な読み解き方を学び、これまでの『営業利益・利益率』だけでなく、経常利益や当期純利益なども比較しながら、会社経営全体の状況を理解することができました。 サプライヤ分析で何を理解する? この知識を活かして、業務上でサプライヤ分析を行いたいと考えています。具体的には、担当するサプライヤのP/L分析を通じて、事業構造をより深く理解していきます。分析においては、売上規模、営業利益、営業外利益・費用、経常利益、当期純利益といった項目ごとに詳細に読み解いていくつもりです。 数字から何を創造する? さらに、分析力を身につけることで、数字から事業の特徴や課題を創造できるようになりたいと考えています。競業他社や自社、さらにはサプライヤのP/Lを比較分析し、それぞれの特徴を把握することで、研究開発に力を入れているか、営業外費用がかかりすぎているかなどの仮説を立てる習慣をつけていきたいです。

データ・アナリティクス入門

悩みを力に変える仮説の魔法

どんな仮説を作る? 普段は問題意識や論点の着目はできるものの、その先の進め方に悩むことがあり、課題から仮説につなげるのに苦手意識を抱いていました。しかし、3Cや4Pを活用することで仮説の立て方を理解でき、今後はより具体性のある仮説を構築できるよう努めたいと感じています。 新たなデータはどう? また、これまでは既存のデータだけで答えを導く方法に頼っていたため、仮説の裏付けとして新たなデータを収集する発想がなかったことに気づかされました。今後は情報が偏らないよう注意しながら、必要なデータを積極的に取りにいく姿勢を身につけたいと思います。 どう説得力を出す? 売上に関しても、なぜこのような結果になったのか説明が十分でなかったため、まずは結論を支える仮説を立て、その裏付けとなるデータを取りに行くことで、より説得力のある説明ができると感じました。普段から問題意識を持つことで仮説の具体性が増し、分析の視野が広がると実感しています。

マーケティング入門

マーケティングで顧客を惹きつける方法

「売れる仕組み」とは? 「顧客に買ってもらう」仕組みを作るには、明確なゴールと戦略が不可欠です。これらが整っていなければ、どんなに時間と労力を費やしても成果は得られません。マーケティングの観点から、もれなくダブルチェックしながらアクションの方向性を正しく設定することが重要です。 営業企画における戦略は? 営業企画では、販促支援に重点を置くことで売上の最大化につながるかどうかを明確にする必要があります。現状の顧客属性や市場規模、そして成約までのタイムスパンを総合的に考慮し、限られたリソースをどこに配分するのかを判断します。 マーケティング思考の活用法 マーケティング思考を活用して、目標達成に必要な情報をもれなく抽出する習慣を身につけましょう。そのためには、必要な情報を紙に書き出して言語化することが重要です。また、第3者からのフィードバックを定期的に受け取る機会を設け、あらゆる意見を得られるように人選にも配慮しましょう。

データ・アナリティクス入門

アウトプットが照らす分析の道

データ収集時の注意点は? データ収集の段階で、最終的なアウトプットのイメージを明確に持つことが非常に大切だと改めて実感しました。演習を通じ、ただ漠然とデータを分析するのではなく、何を理解したいのか、どのような知見が得られるのかを意識しながら分析する必要があると感じています。 仮説の重要性は? これまでは業務上、データを加工して気になる情報が見つかればその伝え方を考えるという流れで進めていたため、分析を行う際には、まず仮説とアウトプットのイメージを持つことが質の向上に大きな差を生むのだと実感しました。 質向上への取り組みは? この経験をもとに、売上の変動分析においても、従来の手当たり次第の手法から脱却し、しっかりとしたアウトプットのイメージを持って取り組んでいきたいと考えています。また、以前「分析がわかりにくい」という指摘を受けたこともあり、優れた分析手法を取り入れることで、さらなる質の向上を目指します。

データ・アナリティクス入門

仮説検証で開く課題解決の扉

本質はどう捉える? 問題解決プロセスでは、「何が問題なのか(what)」「どこに原因があるのか(where)」「なぜその問題が発生しているのか(why)」の3点に対して、徹底的に検証することが重要であると学びました。 原因をどう探る? また、whyの部分については、3Cや4Pといったフレームワークを活用することで、より具体的な原因の特定と分析が可能になることが印象的でした。各アプローチにおいて、仮説を立て、既存または新規のデータを用いて検証する作業が鍵であると感じています。 新たな視点は? 特に、売上データの結果は複合的な要因が重なっており、一概に原因を絞るのは難しいという現実があります。それにも関わらず、自分なりにここが原因だろうという仮説を立て、検証を通して新たな視点や解決策につなげることの重要性を実感しました。今日学んだフレームワークを活用しながら、今後もさまざまな課題にチャレンジしていきたいと思います。

戦略思考入門

「やめる勇気が業務を進化させる」

業務見直しの必要は? 現在の業務を冷静に見直すことで、戦略的にやめることや捨てることの必要性を学びました。何かをやめる際にはデメリット、特に顧客からの反発を懸念しがちです。しかし、様々な角度からメリットとデメリットを分析し、総合的に判断することが重要であると感じました。 顧客サービスの見直しは? 自分の業務や自組織の業務において、今回学んだ視点から見直すべき業務は多く存在します。特に、売上につながらない対顧客サービスについては、疑問を持たずに当たり前に行ってしまっていることが多いです。そのため、見直してやめる判断ができるのではないかと感じています。 議論の進め方は? まずはやめる候補の業務を洗い出し、それらのメリットとデメリットを冷静に書き出してみたいと思います。その後、書き出した内容を職場のメンバーと共に議論し、抜け漏れがないか、また組織全体で見たときにどう変化するのかを確認していきたいと考えています。

データ・アナリティクス入門

幾何平均で見える新世界

なぜ異常値が出る? これまで、代表値や単純平均、加重平均は業務で使用してきましたが、幾何平均、中央値、標準偏差は財務業務では使う機会がほとんどありませんでした。特に、売上の成長率を計算する際に、幾何平均を用いなければ異常値が算出されてしまう点には驚きを覚えました。このことについて、なぜそのような結果になるのか、また今後どのように活用できるかを、再度整理する必要があると感じています。 今後の計算はどうする? また、これまで主に財務データを扱ってきたため、幾何平均や中央値、標準偏差の計算・分析を実施する経験がほとんどありませんでした。そこで、まずは顧客の年齢層データを対象に、中央値や標準偏差を計算し、その分析結果を社内で共有する予定です。今後は、財務業務に応用できるデータとして、幾何平均、中央値、標準偏差が有効に活用できる分野を探り、エクセル関数を用いた計算方法についても調査し、実際に計算していきたいと考えています。

アカウンティング入門

数字が奏でる事業ストーリー

数字の背景は何? 財務諸表を単なる数字の集まりと捉えるのではなく、事業に必要な資産を調達・活用するストーリーとして理解することの重要性を学びました。暗記による学習ではなく、各項目が具体的に事業にどう寄与しているのかを考える視点が求められると感じました。 業界の価値は見える? また、財務諸表からはその企業が何を提供し、どのような価値を重視しているのかが読み取れるため、同じ業界内でもコンセプトが異なることが数字から明確にわかる場合があるという点にも気づかされました。 理念と数字はどう連携? さらに、企業の理念やパーパスといった、経営の根幹を成す価値観と財務諸表とのつながりを意識することが大切だと実感しました。たとえば、「売上原価」や「販管費」といった項目に計上された数字が、実際の現場でどのように機能しているのかを考慮することで、机上の数字だけでは捉えきれない事業の実態を把握できるのではないかと思いました。

「売上」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right