クリティカルシンキング入門

ロジック整理で提案力アップ!

どうしてロジック整理? 文章としてアウトプットすることで、ロジックが整理されると実感しています。ロジックが整理されていないアウトプットは、受け手に余計な負担をかけてしまうので注意が必要です。文章を書く際には、抽象度を統一し、論点の漏れを防ぐことが特に重要です。 企画提案の極意は? 企画提案をする際には、ロジックツリーを意識することが非常に有効です。顧客への提案や社内での提案の場面では、相手の理解を促進するために、相手の脳内でロジックツリーが自然に組み立てられるように説明することが求められます。 なぜ文章は急がれる? ロジカルな文章をアウトプットすること自体には苦手意識はありませんが、アウトプットのスピードに課題を感じています。そのため、毎日できるだけ400文字程度の文章をアウトプットする習慣を続けることを目指し、スピードを向上させようと努めています。

クリティカルシンキング入門

図解が生む気づきと共感

図解の活用はどう? 課題の全体像が漏れなく把握できるよう、図解を活用する点は非常に有用だと感じます。普段の口頭での対話に加え、ホワイトボードを用いることで共通の理解を深め、会議がスムーズに進む印象を受けました。 クライアントの視点は? また、クライアントとの課題整理にも図解は役立ちます。さまざまな課題が出た際に全ての視点が網羅されているか検討するのに適しており、定量的な情報を示す際にも理解が容易になると感じました。図解することで、クライアントが見落としている可能性のある視点にも、指摘するのではなく一緒に気づくアプローチが取れると考えています。 提案手法はどう? 実際、クライアントへの提案の場面では、この考え方を取り入れてみようと思います。事前に多角的な切り口で準備を行い、セッション中に図を用いて書き出しながら共に理解を深める方法を実践したいと考えています。

データ・アナリティクス入門

なぜ?と問い続ける現場改善の鍵

なぜ根本原因を追究? 課題解決にあたって、「なぜ?」と問い続けることにより、真の原因にたどり着けるという学びを改めて実感しました。表面的な数字だけに頼るのではなく、深く掘り下げることで問題の核心が明らかになり、解決までのスピードが大きく変わることを感じています。 数字だけで把握できる? 生産ラインの稼働率については、数字だけでは原因を十分に把握できない点が問題でした。そこで、MECEの考え方を取り入れ、品種別や曜日別といった多角的な視点から分析することで、従来は見落とされがちだった問題点を浮き彫りにできると考えています。 どうやって協力体制を作る? このような分析手法をもとに、自身の意見を整理して製造現場に提案し、全員で協力して稼働率向上を図りたいと思います。より具体的な視点で原因に迫ることで、現場全体の改善へと繋げていきたいです。

デザイン思考入門

生成AIとデザイン思考で切り開く挑戦

生成AIの使い方は? 生成AIを効果的に使いこなしている皆さんの姿に驚きました。また、提案されたアイデアが多角的な視点から考えられており、誰も同じコンセプトで作成していなかった点が印象的でした。自分もどの部分でユニークな回答を生み出せたのかを見直し、今後の取り組みに活かしていきたいと考えています。 課題解決の流れは? デザイン思考入門で学んだ共感、課題定義、発送、試作の手法を総務業務の改善活動に積極的に取り入れていきます。まずは、様々なイベントに積極的に顔を出して情報を収集し、皆さんが抱える問題点を洗い出します。その中で特に意見が多かった項目をもとに課題定義を行い、場合によっては実際の現場の声を反映したペルソナ作成も検討しますが、生成AIを活用することで自分では捉えきれない視点も網羅できるため、その力も借りながら進めていくつもりです。

クリティカルシンキング入門

問いの力で広がる学びの扉

「問い」をどう捉える? 「問い」にフォーカスしている点がとても印象に残りました。この「問い」を生み出すためには、物事を多角的に捉える視点が必要であると感じます。たとえば、WEEK1で学んだ内容が実際に活かされるという点から、さまざまな見方を取り入れる重要性と、それに伴う言語化のスキルも求められていると実感しました。 資料作りはどう進める? 今後、提案資料や報告資料を作成する際には、今回学んだ視点の多様性と言語化の技術を活かしたいと考えています。客観的で説得力のある資料作成には、顧客の多様な立場(経営層や現場担当者など)だけでなく、自社内のさまざまな視点も取り入れることが必要です。また、他者が作成した資料をチェックする際にも、これらの点を意識し、課題解決に役立つ情報提供ができるよう努めたいと思います。

データ・アナリティクス入門

自ら選ぶデータ分析の真髄

データ分析から何が学べる? データ分析を通じて、体系的な課題解決方法を学びました。実際に扱うデータは自ら補完する必要があるため、比較意識を持って必要な情報を選定するスキルを高めたいと考えています。 応用力はどこから来る? また、業務全般に応用可能なフレームワークや思考パターンを習得できたと感じています。単一の業務でなく、思考が求められる多くの場面で今回の学びを実践し、常に意識を持って取り組んでいきたいと思います。 課題対策は具体的に? 違和感や課題に直面した際は、確認を含む仮説の立案やプロセスの細分化を意識して行いたいです。分析フェーズでは、比較を通じて実証を目的としたデータ抽出や多角的な視点からの提案を心掛け、より具体的な検証ができるようになりたいと考えています。

クリティカルシンキング入門

ロジックツリーで見える説得力

根拠の使い分けは? 根拠を使い分けるという発想はこれまで無かったため、提案を行う際に必ず課題の形成、その原因、解決策という流れで考えてきた自分にとって大変新鮮な学びとなりました。 ロジックツリーの効果は? また、資料作成や他部署への提案において、前提知識のある相手なら多少省略しても伝わるものの、実際の業務ではそのような場面は少なく、ロジックツリーを用いることで相手に明確に伝わる文章を作成する必要性を強く感じました。 説得力向上はどう? さらに、報告や資料作成において結論だけではなく、根拠が明確でないために論理が飛躍し説得力に欠ける場合が多かったことから、ロジックツリーを活用して、説得力のある提案ができるよう努めていく所存です。

デザイン思考入門

本質を捉える提案の極意

顧客課題の見える化って? 企業向け研修を提案する際は、バリュープロポジションのフレームを用い、顧客が抱える課題や困りごとを一緒に可視化することが重要だと感じました。これにより、誤った想像に基づく解釈を防ぎ、的確な提案につながる可能性が高まると考えています。 ブレストで本質を探す? また、ブレーンストーミングには複数の種類があることを学びました。発想を広げる際には、さまざまなフレームを活用しながら、発散と収束を繰り返すことで、本質的な課題を見極めるアプローチが有効だと感じています。

クリティカルシンキング入門

課題解決のためのイシュー設定とその意義

イシューの設定は何が重要? イシューを見極めることの重要性を学びました。まず、何を解くべきイシューとして設定するのかを考えることが必要です。そして、そのイシューに対しての主張や根拠をセットにすることが重要です。このためには、ロジックツリーを用いて抜け漏れなくダブりなく考えることや、データを適切な形で扱うことが求められます。 提案時に

「課題 × 提案」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right