データ・アナリティクス入門

仮説で拓く!多角的学びの道

分解で何が見える? 今週の学習でまず印象に残ったのは、問題の原因を明らかにするためにプロセスを分解する考え方です。以前学んだロジックツリーと同様のアプローチで、複雑な問題も整理しやすくなる点が非常に参考になりました。 A/Bテストの本質は? また、初めてA/Bテストについて学びました。Webサイトやアプリの改善において、2つのパターンを比較してどちらが効果的か検証するこの手法は、データに基づいた改善策を決定する上で非常に有用だと感じました。 対概念で広がる視野は? さらに、対概念という考え方も学びました。対象となる事象の反対の観点を同時に考えることで、物事を多角的に捉え、より本質的な理解につながるという点が印象的でした。 患者動向をどう分析? 診療科別の患者受診動向データ分析に関する学習内容も非常に有益でした。分析の視点に差異が生じた場合に、仮説に基づいて問題解決のプロセスをWhat(問題の明確化)→Where(問題箇所の特定)→Why(原因の分析)→How(解決策の立案)のステップで進めることで、より精度の高い分析が可能になると理解しました。これまではいきなり解決策を検討することが多かったため、本質に迫った対策を導き出す点で大きな学びとなりました。 仮説と実試行は? また、現時点ではA/Bテストの具体的な活用場面はイメージしづらいものの、仮説を試しながら問題解決につなげる考え方が日々の業務にも応用できると感じています。 比較で見える分析法は? 分析の基本的な進め方については、「分析は比較である」という考え方のもと、①目的・問いの明確化、②問いに対する仮説の設定、③必要データの収集、④分析による仮説の検証というサイクルを回すことが重要だと学びました。インパクト、ギャップ、トレンド、ばらつき、パターンなどの視点にも着目し、グラフや数値、数式を用いて視覚的に分かりやすく情報を提示することが求められます。仮説思考やフレームワークを活用して多角的に検討することで、データから有益な情報を引き出し、効果的な行動につなげることができると実感しました。

戦略思考入門

経済の本質を学び行動計画に活かす

規模と範囲の経済性は? ゲイルでの学習を通じて、経済の基礎概念である「規模の経済性」や「範囲の経済性」について学びました。規模の経済性については、生産量が増えることでコスト削減が可能になるという原理を理解しましたが、実際にはロスが生じる可能性があり、注意が必要です。一方、範囲の経済性では、既存の資源を有効に活用し、新たなビジネスチャンスを生むことができる点を学びました。例えば、業界の垣根がなくなりつつあるコンビニやドラッグストアの事例がこれに該当すると理解しました。同時に、多角化のリスクを認識し、安易な事業拡大を避けるべきであることも学びました。 本当に正しいのか? これまでなんとなく受け止めてきたことを、「本当にそれで正しいのか?」と問い直すことの重要性を改めて感じました。感情や一般的な認識に基づいて判断すると、大きなミスにつながる可能性があります。単なる感覚的な理解ではなく、本質的な意味を理解することが重要です。 総合演習の成果は? 総合演習では、学んだ知識を実際に活用し、ビジネスケースを分析する経験を積みました。これまでの学習が役立ち、複数の視点から問題を分析し、最適な解決策を提案する力が求められる場面が多く、とても良い経験となりました。特に、安易に施策を実行に移さず、目的や市場分析をしっかり行った上で最適な施策を打てるように心掛けたいと思います。 部署の経済性は? 現在の部署のメイン業務が業務集約であるため、「範囲の経済性」は部署内の異なるチーム間で活用できそうです。あるチームで開発したDX業務を他チームの業務に取り入れることは実行可能であると感触を得ました。また、規模の経済性はすでに私の所属部署に適用されており、業務集約と自動化により生産量が増えることで、コストを抑えながら効率を上げることが叶っています。 数字で計画見える? 行動計画は、企画立案時には定量的な数値を活用し、見えない数字を引き出せるよう目指します。また、全体を俯瞰したうえで課題を解決に導くために、戦略的思考を習慣化し、思考力と判断スピードの向上を図りたいと考えています。

クリティカルシンキング入門

データ分析の力で見えない答えが見えてくる

分解という手法を学ぶ 与えられたデータをどのように活用するか、数字を味方にする「分解」という手法を学びました。情報を鵜吞みにするのではなく、手を動かしグラフ化するなどの簡単な工夫で、新たな分析・類推の元となることを再認識できました。 分解のポイントとは? 分解の方法にはいくつかのポイントがあります。基本として、MECE(モレなく、ダブりなく)を目指すこと。そして全体の範囲を明確に定義することで、精度が増すと感じました。層別分解(例:年代別)、変数分解(例:売上=単価×個数、どこが増減したか)、プロセス分解(例:入店⇒退店のプロセスで分ける)などの手法が紹介されましたが、感覚ではなく一つ一つ丁寧に試行錯誤することで、結果に繋がる可能性が広がります。仮に結果が出なかったとしても、その切り口に変化がないという情報が成果としてあり、失敗ではないと認識を新たに持つことができました。 MECEと分解方法の実務応用 業務上、様々な数値を取り扱う機会があります。新規業務のフロー作成時や集計業務、既存のルーティン業務に関しても、MECEや分解方法を意識することで、データの抽出方法が変わると感じました。 ミーティングでの分解活用法 新規業務フローのデータや数値取り纏め方法をMECE、分解方法を意識しながら切り口に変化をつけて分解を繰り返し、現状気付けていない数値の傾向や改善策を用意し、関係各署に意見具申していきます。ミーティングの機会も多いため、事前に議題を確認し自身の提案パートに関してはMECE・分解方法を意識し、他に懸念材料や他の提案方法がないかを模索する癖をつけます。 ルーティン化するための工夫 癖付けを具体的に行うため、項目ごとに分解方法をルーティン化します。まず全体の範囲を定義し、5W1Hで問題点を明文化し、分解方法と切り口を選定、MECEを意識して内容を再確認します。これを最低2往復行います。 方法の変化と学習の進捗 最適解とは思いませんが、反復トレーニングの一環として上記手法を学習期間中に実施し、途中で方法も変えていく予定です。

データ・アナリティクス入門

分類の新視点、成功への一歩

分析とは何? 「分析=分類」という視点は、データ分析の本質を捉える上で非常に重要だと感じました。膨大な情報をそのまま扱うのではなく、目的に応じて比較可能な形に分類・整理することが、分析の第一歩であると認識しています。また、「分析とは比較なり」という言葉が示すように、異なる要素や時点を比較することで、初めて傾向や違いが明確になっていく点も学びました。 目的はどう明確? さらに、分析には明確な目的が必要であり、仮説を立てて検証するサイクルを回すことが、意味のある結果を得るために不可欠だと実感しています。この考え方は、数値の単なる把握に留まらず、どの部分を改善すべきか、どうすれば成果が上がるのかといった具体的な施策検討へとつながるものであり、今後の業務に積極的に取り入れていきたいと考えています。 講座促進策はどう? また、データ分析の知識は、当社が推進している講座の受講促進において大いに活かせると期待しています。具体的には、対象となる教育機関や宿泊業界における研修実績や予算、過去の導入事例などを定量的に整理・分析することで、より効果的な提案資料の作成や、営業の優先順位付けが実現できると感じています。さらに、各施策ごとの反応や申込数などを時系列で可視化することで、PDCAサイクルの精度向上にも寄与するはずです。 ターゲット抽出はどう? まずは、教育機関や宿泊業界の人材育成に関するデータ収集から始め、公開情報や補助金制度、業界レポート、ヒアリングを通じて得た情報をExcelで整理します。次に、予算規模や研修回数などの傾向を数値化し、明確なターゲット層を抽出していきます。その上で、ターゲットごとのニーズに合わせた提案資料を作成し、営業活動に活用する計画です。また、講座紹介の販促施策における各種反応率を記録・比較し、次回以降の営業活動の改善点を把握できるようにしていきたいと考えています。 継続学習はどう進む? 今回学んだ知見を踏まえ、まずは小さな一歩を着実に進めながら、継続してデータを扱う習慣を身につけ、業務の中で活用していく所存です。

データ・アナリティクス入門

データが語る学びの軌跡

どのプロセスが必要? 分析とは、データ同士を比較する行為であると捉えられます。そして、分析は仮説を立てることから始まり、目的や問いを明確にした上で、仮説設定、データ収集、そしてその仮説を検証するプロセスを踏む、いわば「プロセス×視点×アプローチ」が重要となります. どの視点が有効? 分析における視点としては、インパクト、ギャップ、トレンド、バラつき、パターンの5つが挙げられ、各々の観点からデータを多角的に検証することが求められます。一方、アプローチとしては、グラフ、数字、数式の3種類が存在し、状況に応じた手法の選択が大切です. どの代表値を使う? 数字によるアプローチでは、まずデータの中心位置を示す代表値を注視します。代表値には単純平均、加重平均、幾何平均、中央値などがあり、また、データの散らばりを示す標準偏差などを用いて、他のデータの状態を把握することが重要です。代表値についても、観点により複数の値が存在するため、適切な選定が必要です. 相関はどう読む? さらに、数式化の側面では、「欲しい結果に対して何か効いているか?」という視点で、相関関係を見いだすことができます。ただし、相関が必ずしも因果関係を示すわけではない点に留意しなければなりません. 今後はどう進む? 通常、業務においては年度別の件数や特定分野の傾向を、主に単純平均から読み取っていましたし、どのグラフで可視化するかに対して意識が十分ではなかったと感じます。しかし、今回の学習を通じて、目的を明確にし、どの視点でデータを見るべきか、どのアプローチが最適かということを、1つ1つ丁寧なステップとして考える重要性を学びました。また、相手に説明する際には、ビジュアルを活用することで情報がより伝わりやすくなることも実感しました. 次に何を分析? 今後は、何を分析したいのか、何を知りたいのかを明確にした上で、「代表値」「バラつき」「数式化」の各定義や使用すべき場面を理解し、目的に沿った手法を適切に選択しながら分析を進めていきたいと思います.

クリティカルシンキング入門

グラフと色の魔法:伝わる資料作りの秘訣

グラフを選ぶ際のポイントは? 今週の学習を通じて以下のことを学びました。 まず、グラフ作成においては「他人に伝えること」を念頭に置くことが重要であると学びました。何を伝えたいかによって適切なグラフの種類は変わります。読み手に負担をかけず、一目で理解してもらえるように、自分の伝えたいことと合ったグラフを選択する必要があります。 文字情報以外での伝え方は? また、情報を伝える際には文字だけでなく、フォント、色、アイコンなども意識的に使うことが大切です。これにより、より印象に残る分かりやすいスライドを作成することができます。ただし、アイコンを使用する場合は、それがノイズとならないようメッセージとの整合を確認することが必要です。 資料の冒頭部分はどう工夫する? さらに、スライドに入れるメッセージについては、読んでもらえる工夫、例えば冒頭のアイキャッチやリード文の工夫が必要です。また、この場合にも図表との整合性を取り、協調したい箇所を意識することで、伝えたいメッセージをより明確に伝えることができます。 資料作成で大事なことは? 次に、具体的な資料作成についてですが、以下の点を意識しています。 企画書や提案書の作成では、興味を持って最後まで読んでもらうことが大事です。読みにくい文章になっていないかを確認し、その先が読みたくなるような冒頭のリード文を意識した資料作成を行います。 グラフの使い分けはどうする? 報告書や発表資料の作成では、データによって適切なグラフを使い分け、自分の伝えたいことと合ったグラフを選択することが重要です。 印象に残るスライド作りの秘訣は? 研修資料や業務マニュアルの作成では、伝えようとしているメッセージと書体が与える印象を揃えることが大切です。書体と共に、色についてもメッセージとの整合を意識し、アイコンを効果的に使ってより印象に残る分かりやすいスライド作成を目指します。アイコンを選択する際にも、伝えたいメッセージとの整合に注意します。 これらの点を踏まえ、資料作成を実践していきたいと思います。

クリティカルシンキング入門

思考の偏りに気づく!揚げ物と自己反省の旅

自己認識の意義は何? 今回の学習を通じて、私は自由な発想ができる人間が、無意識のうちに偏った考え方をしてしまうことを学びました。それを防ぐためには、「もう一人の自分」を持ち、自分を客観視することが重要であるということです。また、客観的な視点を養うトレーニングとして、他者とのディスカッションが有効であることも知りました。ディスカッションを通じ、自分の意見を述べるよりも、他者の意見を聴くことから多くを学ぶという点が特に印象に残っています。 思考の偏りに気づいたのは? ライブ授業後の懇親会で「揚げ物をからっと揚げるための方法」について話がありましたが、そこで私は早速偏った思考をしていることに気づきました。「もう一人の自分」の視点で考え直した結果、以下の点を補いました。 揚げるコツは何? 揚げ物をからっと揚げるために注意すべきことは3点あります。まず1つ目は揚げ油の温度です。油の温度が下がると、からっと揚げることは難しくなります。挙げ油を多めにするか、揚げる量を少なくして温度を保つことが大切です。また、温度計を使うとわかりやすいです。2つ目は揚げ時間です。材料の種類やサイズに応じて異なるので、注意が必要です。タイマーを利用し、目安の時間で設定することが役立ちます。最後に、衣の作り方についてです。小麦粉を溶く際は混ぜすぎないように注意し、冷たい材料を用いると良い結果が得られます。 改善点はどこに? 以上が揚げ物をからっと揚げるポイントですが、補うべき点や改善点があれば、ご意見いただけると嬉しいです。 伝え方はどうする? さらに、上司に仕事を報告したり、部下に仕事の進め方を説明する際には、伝えるべき情報を整理し、わかりやすくすることが必要だと考えています。また、部下とのコミュニケーションでは、相手の考えを引き出す話し方も意識したいです。話す前に「もう一人の自分」の視点で見直し、考え方に偏りがないか確認する習慣をつけています。相手の話を聞く際も、自分の考えにない点について深く考え、さらに質問を投げかけるように心掛けています。

クリティカルシンキング入門

MICEを活用した思考の広がり方

学習内容を把握する? 今週の学習で印象に残ったことは、以下の3点です。 MICE再確認の理由は? まず、MICEの必要性の再確認と自身の思考の癖についてです。普段からMICEを意識しているつもりでしたが、今回のライブ授業でその観点を最初から持てなかったのが悔やまれます。なぜ思考がMICEまで及ばなかったのかを考えると、尖ったアイデアを出すことを面白く感じ、MICEを満たすことよりも優先していたことに気づきました。しかし、今思うと、尖ったアイデアとMICEは必ずしも相反するものではなく、MICEを満たすことで、新たな領域まで思考を巡らせることができると感じます。今後は、この点を意識したいと思います。 目的はどう見極める? 次に、思考プロセスの順番についてです。今回の授業では、まずアイデアありきの思考プロセスを採ってしまいましたが、MICEを意識すべきだと学びました。MICE自体も複数の軸を作り上げられるため、まずは目的を明確にすることが重要だと感じました。したがって、目的を明確にし、MICEを考慮し、その後に具体的なアイデアを考えるというプロセスを今後意識したいと思います。 視点の幅は広い? 最後に、思考の幅を広げるための観点についてです。「視点」、「視座」、「視野」という3つの「視」を学びました。授業では視点(患者や医者など)と視座(院長の経営視点)までしか考慮できませんでしたが、視野(動物や無機物の視点)まで考慮することはできませんでした。この3つの視点は思考の幅を広げるうえで有効だと感じたので、今後活用していきたいと思います。 具体的な応用としては、来週から対応するお客様の提案書作成において、MICEや3つの「視」を活用したいと考えています。お客様の目的を満たすソリューションを検討し、提案内容の骨子を作成する際に、漏れがないかをしっかりとチェックしたいと思います。また、今年度の営業目標達成のための施策検討においても、何か見落としている手法がないかをMICEや3つの「視」で考えてみるべきだと思っています。

データ・アナリティクス入門

分析のアプローチで見えた新たな視点

分析とは何を指す? 分析とは「比較」のことを指します。現状を詳細に比較したり、物事を比較することで、解像度の高い理解や把握が得られます。 グラフや数値の算出方法を理解 今回の学習を通じて、具体的な分析アプローチとしてグラフや数値の算出方法について理解しました。データを算出する際には、代表的な数値(代表値)とデータの散らばり(分布)に分け、それぞれに具体的な手法が用いられます。代表値の例としては、単純平均、加重平均、幾何平均、中央値がありますが、特に幾何平均を用いた売り上げ予測の立て方が印象に残りました。また、分布の例としては2SDルールが紹介され、大枠の範囲を考慮した上で平均値を予想する方法が理解できました。 仕事における分析意識の向上をどう図る? ①分析のアプローチに対する仕事の意識 「分析 = プロセス × 視点 × アプローチ」という基本的な考え方を念頭に置き、これらに漏れがないように資料を作成したり、発言するといった意識を持ち続けます。 ②分析のアプローチに対する業務の行動 現状では単純平均を用いて比較することが多いですが、今後は分布やグラフを用いることで新たな気づきを得られるように努めます。 アプローチ方法をどう定着させる? ⓪分析全体の把握およびアプローチ方法の定着化 学習した「分析 = プロセス × 視点 × アプローチ」について、自分の言葉でまとめました。まずは用語や算出方法を含めて暗記し、アプローチ方法を定着させます。 SNS戦略での分析の改善策は? ①SNS戦略での分析の実施 現状では数値を取って把握することが主体で、十分な分析ができていません。今後は、定義に基づいた分析を実施し、比較が必要な場合には代表値や分布を用いて進めます。 データ分析の評価をどう行う? ②データ分析に関する評価 業務上、データから戦略や仮説を立てることが多いため、データに対して視点を持ったりアプローチを探したりすることで、新たな気づきを見つけ、それを共有します。

戦略思考入門

マネジメント力を磨く新しい発見の旅

最短ルートをどう選ぶ? 美容師になるための最短ルートは、美容専門学校に通うことだと考えます。このように、目指す目標を見失わず、適切な入試方式を選ぶことが大切です。同様に、会社に所属しながらマネジメント能力を高めるためには、グロービス経営大学院の改善された教材を学ぶことが最適だと思います。私は静岡市に住んでいるため、地方ではマネジメントを学ぶ環境が限られていますが、その分、通勤や通学のスキマ時間を活用して学ぶことができます。「グロービス学び放題」の教材が提供するスケールメリットを生かし、さまざまな業界の人々とZoomを通じて効率的に学ぶことができ、非常に有用だと感じました。この取り組みを通じて新しい発見があり、他の経営大学院と比較しても効率よく学べることを実感しました。 戦略と戦術はどう違う? また、「戦略」と「戦術」の違いについて、戦略は大局的で長期的な視点から考えるべきであり、戦術は短期的かつ狭い視点に重きを置くという点が参考になりました。今回のナノ単科では、大局的な長期視点を意識し、物事を俯瞰できる人材を目指して学習を進めています。 戦略思考はどう広げる? 一人の社員として、短期的かつ狭い視点で物事を考えがちですが、これからは戦略的な視点を取り入れ、長期的かつ大局的に物事を捉え、日々の設備導入や改善に生かしていきたいと思います。ライブ授業のアーカイブでは、歴史上の著名人たちの戦略について議論しており、まだ知らない偉人が多いことにも気づかされました。そこで、彼らについての書籍を読み、どのように戦略的だったのかを学び、自身の行動に取り入れたいと思います。 目的達成はどう実現? 行動を起こす前に、まず目的を明確にし、目的達成のための最短ルートを考える必要があります。限られたリソースを効率的に活用するためには、相手のスキルや設備の活用状況を把握することが重要です。新しい課題に取り組む際には、費用対効果を意識し、どこに資金を投入すべきかを慎重に検討し、それを戦略的思考で実践していきたいと考えています。

データ・アナリティクス入門

多角的視点で仮説を練り上げる重要性とは

仮説構築のポイントとは? 仮説を立てる際のポイントとして、以下の二点が重要であると学びました。 まず、複数の仮説を立て、そこから絞り込むことが大切です。最初から決め打ちにせず、他の可能性を探ることで幅広い視点を持つことができます。また、仮説同士に網羅性を持たせ、異なる切り口で考えることも必要です。具体的には、3Cや4Pなどのフレームワークを活用することで、多様な視点から仮説を構築することができます。 データ評価の重要性を理解する 次に、仮説を検証する際のデータ評価についてです。単に目の前の数字を比べるのではなく、平均値や割合など、どの指標を比較するかを慎重に選ぶことが重要です。データの取り扱いについても、自分に都合の良いデータだけを集めるのではなく、必要なデータを自ら取りに行く姿勢を持つことが求められます。これにより、仮説はより説得力のあるものとなります。 実証実験の成功をどうつなげる? 今週の学習では、「複数の仮説を立てる必要性」や「自分の都合の良いデータだけをとらない」といった点の重要性について改めて学ぶことができました。実証実験においては、これらのポイントが本来最も重要であるにもかかわらず、見落とされがちです。新規事業においては、実証実験の成功要因や失敗要因を特定し、次へと繋げるためにも、責任を持って仮説検証を行う必要があります。 目標達成のための仮説設定 私の担当フィールドでは、目標達成に向けたキーファクターを見定めるために、複数の仮説を自分なりに設定したいと考えています。具体的には、以下のステップを意識して進めていきたいと思います。 - 実証実験の検証目的を見直す(現地側と調整可能な範囲で行う) - 検証目的に沿って仮説を洗い出す(いくつかピックアップし、検証項目を絞る) - 実証実験の目標値を先方と合意する これらを進めるにあたり、今週の学習で特に印象に残った「複数の仮説を立てること」や「自分の都合の良いデータだけをとらない姿勢」を常に意識して実行していきたいと考えています。

戦略思考入門

効率よくビジネスを進化させる秘訣

学びを通して得られた経済性の理解 ビジネスのメカニズムとして、様々な経済性について学びました。コスト低減策については、これまで100か0かという極端な判断をしがちでしたが、適切なスケールメリットを見つけることができるようになりたいと感じました。 SNSマーケティングの重要性とは? ネットワークの経済性も現代のビジネスには不可欠だと痛感しました。SNSを利用したマーケティングや広報活動は、企業がToCビジネスを展開する上で非常に有効です。特に、私のようなOver40のビジネスマンにとって、この方面への感度が今後のビジネスに重要だと危機感を覚えました。 人的資本と範囲の経済性 私の会社ではITサービス事業を行っており、「規模の経済性」はあまり当てはまりませんが、「範囲の経済性」については人的資本の活用が重要です。新たな業務やプロジェクトに人材を充てる「化学反応」という表現が社内でよく使われますが、うまくいかないケースもあります。組織編制では能力や経験以外にも、外向性などの要素を考慮することで人的シナジーを高める必要があると感じました。 習熟効果とイノベーションの必要性 自社の事業は習熟効果の曲線で見ると中盤に差し掛かっていると感じます。固定費や人件費が上昇する一方で、サービスの価格は据え置きもしくはディスカウント状態です。これにより、将来的にイノベーションが必要だと危機感を覚えました。 適切な価格設定への試算方法 自社事業について、必要な収益を試算したいと考えています。人件費や共通コストを正確にプライシングに反映させることで、適切な価格設定を見極めたいと思います。 継続的な学びの重要性 自身の業務や思考方法も常にアップデートを心がけています。日頃から学びの時間を取り入れ、講座終了後も復習を行いたいと思います。また、定期的に動画学習を取り組むことで、「知識のインプット」➡「自分の考えをアウトプット」➡「業務への置き換え」というサイクルを継続していきたいです。

「学習」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right