クリティカルシンキング入門

伝わるスライドづくりのコツ満載!

適切なグラフの選び方とは? 相手に伝えたいことをスライドで表現する際に重要な点は以下の通りです。 まず、グラフの種類を理解し、伝えたい内容に応じて適切なグラフを選ぶことが大切です。スライドは極力シンプルにし、必要な部分にのみ装飾や色を付け加えるよう心掛けましょう。また、伝えたいメッセージの順番に合わせて図表を配置し、読み手の視線が自然に左から右、そして上から下に動くように工夫します。さらに、読みたくなる文章になるよう、アイキャッチを加えたり体裁を整えたりして、視覚的に引き込みやすくすることも重要です。 準備段階で意識すべきことは? 「スライドを作る前段の労力」という言葉が特に印象に残りました。相手に伝えるためには、データの収集から見せ方、文章の工夫まで多くの努力が必要ということを改めて理解しました。これまで学んできたデータの分解や文章作成の注意点を見直し、実践に活かしていきたいと考えます。 例えば、オリエンテーションのスライドでは、読み手の視線の動きを意識し、文章の硬軟に気をつけて作成することが求められます。メール作成においても、どうすれば学生がすぐに読んでくれるかを考え、アイキャッチを置くことや体裁を整えることが重要です。これによりパッと目に入ってきやすいメールが作成できます。 見直しの重要性をどう考える? スライドを作成する前には、まずそのスライドで何を伝えたいのか、その目的を明確にすることが不可欠です。その目的に沿って、必要な情報を考え、収集します。スライドを完成させた後、装飾が過剰ではないか、重要なポイントが一目で分かるか自分で見直すことが必要です。また、メールなどの文章を作成した後には、自分でも新鮮な目で見直し、伝えたい情報がスムーズに入ってくるか確認するよう心掛けます。 このように、伝え方を工夫することで、相手に確実にメッセージを伝えられるよう努めたいと思います。

クリティカルシンキング入門

グラフとメッセージ、一致させる極意

グラフとメッセージは合致? グラフと見せ方の工夫として、メッセージとの整合性が重要であることが印象に残りました。これまで、既に作成されたグラフをそのまま資料に使用していましたが、本当にメッセージと一致していたかはあまり考えたことがありませんでした。今後は、メッセージと図、グラフの相関性を考慮し、適切なものを選択していきたいと思っています。 フォントの印象はどう? 見せ方の工夫では、フォントや色によって与える印象という点も考えさせられました。これまでは、多くの装飾や色を使っていたため、読み手を意識しつつ、最小限でわかりやすく示すことを心がけたいです。 アイキャッチは効果的? また、読んでもらうための工夫として、アイキャッチや文章の硬軟、体裁が挙げられていました。その中でも、アイキャッチに関しては、人によって受け取られ方が異なるため、一般的にどんな内容ならイメージしやすいかに悩みました。 学んだ知識を活かす? 今回学んだ内容は、以下の自分の業務に活かせると考えました。物性比較やネガティブキャンペーンなどの比較データには、最適なグラフや表を適用し、分かりやすくまとめる方法が使えると思いました。また、社内外の報告用資料やメール、議事録においては、読んでもらう工夫としてアイキャッチを置くことや、体裁を整えて読みやすくすることに役立てたいです。読み手を意識し、内容作成を心がけていきます。 報告書の工夫は? メールや報告書を書く際は、単に文章を書くのではなく、タイトルの工夫や体裁を整えることで、読み手が理解しやすくなるように構成します。パワーポイント資料作成においては、キーメッセージと内容が一致しているか、第三者に確認してもらいます。過剰な強調を避けるためにも、資料作成後に内容を見直します。グラフ作成においても、示したいメッセージとグラフが一致しているかを意識したいと思います。

データ・アナリティクス入門

データ分析でビジネスの謎を解く方法

売上判断で何を比較すべきか? 売上の良し悪しを判断するとき、「大きい」「小さい」「高い」「低い」などの表現を用いる場合、必ず何と比較しているかを示すことが重要です。この比較によりデータの加工を行うと、さらに新たな視点が見えてきます。 代表値とデータ分布をどう見る? まず、データの特徴を一つの数字に集約して捉えます。代表値や平均値を見るとき、その数字だけで判断せず、データの分布も合わせて考慮する必要があります。 データ視覚化の重要性は? 次に、データを視覚的に捉えることが重要です。データをグラフ化、ビジュアル化することで、データ間の関係性を視覚的に捕えることができ、特徴の把握や解釈、仮説立案が容易になります。目的に応じて適切なグラフ(円グラフやヒストグラムなど)を選ぶことで、比較・分析がしやすくなります。 数式で関係性を捉える方法は? さらに、数式を用いて関係性を捉える方法もあります。代表値として単純平均、加重平均、幾何平均、中央値、そして散らばりを示す標準偏差を利用します。単純平均だけでなく、他の代表値もしっかりと使いこなすことが求められます。 仮説検討で何を探る? これらの手法を用いて数字を算出し、比較することから仮説を立て、傾向や問題点を見つけるには、個人の経験や知識、世間の動向やトレンドを把握することが重要です。月次報告書にこれらの比較方法を取り入れ、仮説の立案までをセットにし、分析報告をまとめることが目標です。 来週火曜日の報告までにすべきことは? 来週火曜日に役員へ報告する資料が必要です。この資料は、単に実績を表としてまとめるだけでなく、そこから読み取れる傾向も分析し、上司に報告する内容にしたいと考えています。仮説については、実際の現場の責任者とも会話し、その仮説にどれほどの差異があるかを検証し、次回以降の仮説検討の際に参考にしていきます。

データ・アナリティクス入門

分析で見つけた新たな発見と気づき

比較による効果測定とは? 分析とは、比較することである。まず、分析する項目を整理し、各要素の性質や構造をはっきりさせることが重要だ。何かの効果を測りたい場合、「ある」場合と「ない」場合で比較を行い、分析対象以外の条件も整える必要がある(これは「Apple to Apple」と呼ばれる)。 データ分析の目的と仮説 データ分析を行う際には、まず目的と仮説を立てる。例えば、データ分析の目的は何で、その結果どのような状態を目指すのかを明確にすること。そして、どの項目を分析すれば目的を果たせるのか、その項目をどのようにデータ加工すれば良いのかを考え、具体的な仮説を立てることが大切だ。 適切なデータ加工と表現法 データにはその種類に応じた加工法やグラフの見せ方が必要である。割合で表現するのが適切な場合と、実数(本来の値)で表現するのが適切な場合がある。また、質的データ(数値の大小に意味がないもの)と量的データ(数値に意味があるもの)の違いを見極める必要がある。 人事部門のデータ活用法 人事部門では、健康経営やエンゲージメントに関するデータを扱い、改善に向けた施策を企画することが多い。このため、データを活用して課題解決や目標達成のためのPDCAサイクルを効果的に回せるようにすることが求められる。これまでの施策参加者がどれだけ改善したか、「参加した人の中で●●をした人はより■■だった」といった分析を行うが、このためには、参加者と不参加者の間での比較を行うことが重要だと感じている。 目的設定と議論の重要性 まずは、目的を明確にし、自分自身の思い込みや仮説に偏らず、上司やメンバーと徹底的に議論することが必要だ。次に、課題に対して目指す姿を定量的にKPIとして設定し、現状を把握する。算出するデータに定義と根拠を持ち、それを分かりやすく伝えるスキルを身に付けることも重要である。

データ・アナリティクス入門

データで説得力を増す!MBA流の学び

講座内容の印象は? ライブ授業のアーカイブを拝見しました。今回の講座は、ビジネスパーソンが陥りがちな視点を見直し、MBA生が効果的にデータ分析を行えるよう構成されていると感じました。他のEMBA生が適切なデータ加工を行い、ケースの課題について効果的な表を作成して発表しているのに対し、私は数値をそのまま載せ、力量の差を感じることが多く、本講座の内容は非常に参考になりました。今後、レポート作成を行う際には、本講座の内容を何度も振り返り参考にしようと思います。 定量分析の意義は? パソコンを購入する時、私は「価格」と「スペック」を重視しますが、実際にはその場の感覚で購入することが多く、定性的だと感じました。ライブ授業を通じて、定量的な仕分けと表のまとめの大切さ、スモールデータを基に仮説を立て、あるべき姿を検討することが重要であると学びました。 実践の効果は? 社内の会議や発表の場でも、本講座で学んだ仮説やあるべき姿を考えた効果的な資料作成を実践していきます。この実践により、受け手の印象が大きく変わり、営業やメーカーの社内会議でも限られたリソースの中で短期間に成果を上げることに繋がると思います。ビジネスの場では、勘や直観といった定性的な判断に偏りがちですが、一工夫して定量的にデータをまとめることで、社内で数値に基づいた効果的な判断ができるようになると感じました。 一歩踏み出すのは? 普段行っている新NISAの株式投資判断や競馬の予測など、小さなことから始めていきたいです。例えば、サステナビリティに力を入れている会社を投資の目標にして、2050年のカーボンニュートラルに向けた資金の投入度をエクセルで分析し、効果的なグラフ作成に活かせると思います。また、ビジネスの場の資料作成では、小川先生の理論を基に、受け手が効果的な判断を行えるよう努めたいと思います。

クリティカルシンキング入門

効果的なグラフと文字表現で資料作成のコツをつかむ

グラフの表現方法を学ぶ 相手に伝わるメッセージやグラフ、スライドの作成方法を学びました。以下は、個人的な要点の抜粋です。 まず、データやグラフの表現方法についてです。適切に使かえば、表現が豊かになり、相手により伝わりやすくなります。具体的には、グラフ単体がしっかり成り立ち、適切なグラフを選択することが重要です。 文字表現で印象を強化するには? 次に、文字表現の方法です。フォントや色、アイコンを効果的に使用することで、より印象的なスライドを作成できます。この際、伝えたい内容との整合性を考慮することが大切です。 最後に、データやグラフ、文字表現を合わせて意図が明確に伝わるスライドを作成することが求められます。情報とメッセージの順番を合わせ、メッセージにも意図が伝わる一言を添える。グラフにも意図が伝わるポイントを視覚化することがポイントです。 今後の活用計画は? これらを踏まえ、課内共有や営業店向け、他部署向けの資料作成の機会があるので、今後はWeek1から3までで学んだことを用いて、意図した内容が相手に伝わるスライド作成を心がけていきます。 今週の講義で特に学んだのは、グラフの原則や文字表現のコツです。これらを活用し、伝えたい内容の整合性を念頭に置いてスライドを作成します。 資料作成前に意識すべき点 案内文や資料作成に着手する前に以下の点を意識します。 - 要点(伝えたい内容)を整理する。この際、伝えるべき相手の情報をイメージすることを忘れないようにします。 - 草案を固めたうえで、データ・グラフ・文章表現を作成する。 - 初稿を確認して、データやグラフの切り口、表現方法や配置に整合性があるかを確認する。 - 文字表現(言語選択と装飾)やアイコンの活用に整合性があるかを確認する。 以上のポイントを意識しつつ、より理解しやすい資料作成を行っていきます。

データ・アナリティクス入門

数字が照らす学びの道

どうやって特徴を捉える? 大量データを比較する方法として、まずデータの特徴をひとつの数字に集約し、グラフ化して視覚的に把握する手法を学びました。これにより、数値としての評価だけでなく、データの散らばりや傾向も同時に捉えることが可能になります。 平均値の違いを知る? 平均値や中央値を確認するために、単純平均、加重平均、幾何平均、そして中央値の各手法を比較しました。今まで単純平均や加重平均を主に用いていたため、このうち幾何平均と中央値の手順が分かっていなかったために、業務上物足りなさを感じていた点に気づくことができました。 分布の形はどう判断? また、データの平均的な分布をグラフ化することで、これまで感覚的に捉えていたデータの散らばりを、標準偏差などの具体的な数字として表現する必要性を認識しました。こうした数値化は、データのばらつきが大きいのか小さいのかを明確に捉える上で非常に有効です。 利用状況をどう見る? さらに、提供しているサービスの利用状況を単なる数の集計として週次報告している現状に対して、まだ活用できていないデータの中に、利用者の属性や利用時間帯などの詳細な情報が含まれているのではないかと考えるようになりました。これらを分析することで、サービスの改善点や利用者の利便性向上につながる提案が可能になると感じています。同様に、ライセンスやクラウドの予算についても、感覚的な予測に頼らずデータに基づいた数値をフィードバックすることで、より説得力のある結果に結びつくと考えています。 予測結果は合致? また、1年前に作成した将来のクラウド利用予測と現状を比較するタイミングを迎えたことから、その分析を活用し、利用していなかったデータも含めてさらに掘り下げていこうと考えています。あわせて、学習用の動画を見直すことで、自分自身の理解をより一層深める予定です。

データ・アナリティクス入門

条件を揃えて見える学びの真実

正しい比較はどうする? 「Apple to Apple」という考え方が印象に残っています。同じ条件に揃えて比較しなければ、意味がなく、データを正しく読み解くために非常に重要だと感じました。頭では理解していても、経験やクリティカルシンキングが不足していると、ついつい情報を鵜呑みにしてしまう危険性があります。 企画と集客の関係は? 私は学生向けのオンラインイベントの企画と集客を担当しています。まず、企画と集客は表裏一体であり、学生の行動分析が重要です。具体的には、どの時期にどのような申込行動があるのか、参加後にはどのような行動に繋がっているのかを解析し、その結果をもとに企画の対象、開催時期、内容を決定しています。 認知広げる秘策は? さらに、集客においては「いつ、何を、どのように」告知して認知を広げ、申込を促し、開催前に離脱を防ぐ対策まで考えなければなりません。状況が常に変化する中で、申込状況をリアルタイムに把握し、必要な打ち手の変更を迅速に行うことが求められます。企画の効果が集客に影響するため、両者は密接に連携させる必要があります。 データ整備は進んでる? 現状では、まずデータの整備が最優先事項です。折り返し地点まで進めていますが、依然として地道な作業が続いています。正直なところ、「会社が整えておくべきだ」という愚痴も出るほどですが、しっかりと整備を進めなければ本質的な分析はできません。今後も引き続き取り組んでいきます。 管理方法はどうなってる? また、データの記録や管理、分析を効果的に行うためには、エクセルフォーマットの整備も欠かせません。どのようにすれば見やすく、管理しやすく、分析しやすいかを、部署メンバーと意見を合わせながら調整を進めています。この作業は地道ですが、本質的なデータ分析の議論に繋がっているため、継続して進めていく覚悟です。

データ・アナリティクス入門

データが教えてくれた学びのヒント

代表値で全体像は? データをどのように加工して把握しやすくするかを学びました。まず、代表値を求めることで全体像をシンプルに掴む方法を理解しました。代表値としてよく使われる平均値は、データ全体の傾向を捉える上で便利ですが、ばらつきを反映しにくいという欠点があります。そのため、目的に応じて加重平均、幾何平均、中央値などの手法を使い分ける必要があると感じました。 偏りはどう捉える? また、データの偏りを把握するために標準偏差が有効であることを学びました。標準偏差は、複数のデータが平均値からどれほど離れているかを示し、ばらつきを具体的に表現する指標として役立ちます。 グラフと予測は? さらに、グラフ化されたデータにアプローチする方法も学習しました。グラフ上の特徴的な部分に着目することで、問題点を深堀りしやすくなるという点や、グラフを見る前に予測を立て、その予測と実際のデータを比較する方法が、分析の深化に効果的だと感じました。データ同士を比較し、仮説を立てることで、次に分析すべき方向性が明確になるのだと実感しました。 代表値の使い分けは? 代表値の選び方についても触れました。たとえば、年度ごとの収益を分析する際、単に平均の粗利額を示すのではなく、プロジェクトごとに異なる売上金額を加味して加重平均を採用することで、より適切な表現が可能になると考えました。また、ばらつきの表現に標準偏差を用いることについては、これまであまり意識していなかったため、今後は積極的に活用していきたいと感じました。 学びをどう活かす? 今回の学びを通じて、データを多角的に把握することの重要性を再認識しました。今後は、常に自分の予測と実際のデータとのギャップに注目し、過去のデータや他のプロジェクトのデータとも比較しながら、具体的な仮説を立てて深堀りを進めていきたいと思います。

クリティカルシンキング入門

踏み込むデータ、広がる発見の世界

データと本気で向き合う? データの用い方や見せ方について再確認でき、また新たな発見を得ることができました。従来は説得力や妥当性を高めるためにデータを利用してきましたが、今回の講習では「データとの向き合い方」自体に踏み込むことで、さらに可能性が広がると感じました。踏み込むというのは、データを分解・分析し新たな発見につなげることを意味します。これまでは、一定の目的が達成できればそれ以上深堀りしなかった自分を反省し、今後は偏りを減らしてより深く分析することで、発見の数や他者への探求の深さ、そして説得力の向上につなげたいと思います。単に表面的な理解で終わるのではなく、データから何が見えているのかを追求していく姿勢が大切だと感じました。 業務で分析は活きる? また、業務においては分類・分解・分析が多くの場面で役立つと実感しました。たとえば、目標設定では、市況や需要予測に基づいてシェアや販売量を設定し、その根拠となるデータや分析結果をもとに説明することで、計画の信頼性が高まります。実施計画においては、マーケティング戦略や営業活動の手段、ターゲット、期待できる効果、効果が現れるまでの時間などを細かく整理し、実行者、評価者、受益者それぞれとの連携を明確にすることが可能です。さらに、効果測定では、シェアや販売量・金額と実施計画との因果関係を明確にして、次のアクションの策定や判断につなげることができます。 分析手法を検討する? こうした業務プロセス全般において、データの分類・分解・分析は有効な手法です。具体的には、説明が必要な場面で、利用可能なデータや参考になる情報がないかを常に意識し、検討することが大切です。たとえば需要予測においては、単に過去の推移を見るだけでなく、季節要因や提供者ごとの特徴も踏まえて分析することで、より実効性のある判断が下せると感じました。

クリティカルシンキング入門

メールに彩り、伝わる魔法

視覚化はなぜ効果的? <W4 学び、気づき> 視覚化することで、情報が2次元で処理できるようになり、文字情報よりも処理速度が早くなり、齟齬や誤認が起きにくくなることを学びました。これには、適切なグラフの利用だけでなく、伝わりやすい表現方法を身につけることが重要です。また、フォントや色についてはこれまで、自身の感覚や経験に頼って使用していましたが、今回学んだ知識を通じて、意識的に使い分ける必要性を痛感しました。 文書作成におけるポイントに関しても、普段から意識していた内容と大きなズレはなかったものの、具体的なポイントを学ぶことで印象がより強く残りました。特に「相手に知りたいと思わせる」工夫や修辞法の活用は、これまで十分にできていなかったため新たな気づきを得ることができました。 仕事でどう使う? <W4 自身の業務への当てはめ> 業務では、電話よりもメールで社内外と連絡を取り合うことが多いため、伝達内容が多くなると文章が形式ばり、堅い印象になることがしばしばです。そこで、今回学んだフォントや色、レトリックを取り入れることで、相手に分かりやすく伝わる文章を心掛けたいと思います。グラフに関しては、データの正確性に目を向けがちでしたが、今後は自分の主観ではなく、相手の目線を意識して作成や確認を行いたいと考えています。タイトル、単位、色など、細部にわたり注意を払っていきます。 実践はどう始まる? <W4 行動計画> 日々の業務ではグラフやパワーポイントの使用機会が少ないため、今回の学びは主にメール文書作成に活かす予定です。ポイントの強調や最後まで読み進めてもらえる工夫を取り入れるため、会社のスケジュールにリマインダーを設定し、毎朝前週の学びも含め確認するようにします。これにより、最低1ヶ月間は継続して意識を高め、実務に役立てていこうと考えています。

データ・アナリティクス入門

データに基づく問題解決法を学んだ充実の時間

分析の基本を理解するには? 講座全体を通して学んだことのポイントは以下の通りです。 まず、分析についてです。分析とは、比較することと同義です。そして、問題解決のプロセスにおいては「What→Where→Why→How」の順序で進めることが重要です。平均値を見る際には、そのばらつきにも注意を払いましょう。対策を決定する際には固定的にせず、柔軟に対応することが求められます。また、生存者バイアスに影響されないように注意し、生存者と非生存者の両方に目を向け、データの分布全体を分析する必要があります。結果を他人にわかりやすく伝えるためには、データのビジュアル化が有効です。 戦略策定で役立つ方法は? 次に、下半期の戦略策定です。クライアントの下半期戦略を作成する際に、講座で学んだ分析のフレームワークを活用することができます。 データをどう活かすか? さらに、分析結果の資料への落とし込みについてです。クライアントの意思決定を支援することを目的として、データの見せ方に工夫を凝らします。 データ分析の効率化を目指すには? データ分析のやり方の向上も重要です。AIなどのツールをうまく活用することで、精度の高い分析を短時間で実施します。必要最低限の情報をもとに素早く答えを出して実行する。このサイクルを多く回すことで、最短で最大の効果を生み出すことが可能です。 効果的なデータ伝達法は? 最後に、データ分析結果の伝え方についてです。対峙する相手は数値分析を本職としていないことが多いので、単なる数値の伝達だけでは不十分です。データを可視化し、クライアントの課題を踏まえたフォーマットに変換します。クライアントが知りたいのはビジネス上のインパクトです。そのため、ビジュアルで見せたり、ビジネス言語で表現して、一目で理解できるようにすることが重要です。

「表 × データ」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right