クリティカルシンキング入門

データ分析で企業課題を解決!

データ利用の意味は? データを用いる際には、何を表しているのかが明確であり、求める情報を把握できることが重要であると再認識しました。データを全体的に理解し、必要な情報が簡単に見つけられるように工夫を凝らすことも大切です。 目的設定はどうする? データを分析や検証に活用するには、明確な目的を持つことが欠かせません。また、データを分解する際にはMECE(Mutually Exclusive, Collectively Exhaustive)を意識し、様々な観点から分解を試みることが重要であると学びました。 決算分析の秘訣は? 私の会社での月次・年次決算や予実乖離分析にもこの手法を活用できると考えています。これまでの分析では、売上や利益などの主要な数字の推移に依存しており、MECEを用いた分解を行わなかったため、説明できない誤差が残ることがありました。しかし、このスキルを活用することで、予実乖離分析をより正確に行えると感じています。全体の財務諸表を、顧客別や顧客売上別、利益別、部品別といった様々な視点で分解し、正確な分析に結びつけたいと考えています。 コスト要求はどう対処? また、不定期に発生する顧客からのコストダウン要求に対して、社内のコスト把握と顧客要望との比較分析を行うことも目指しています。そして、24年度の予実乖離分析を行ったうえで、25年度の予算作成に反映させ、より正確な計画を作成したいと考えています。

データ・アナリティクス入門

データの見方で変わる分析の魅力

代表値と平均値の意味は? 「代表値」の取り方によって、仮説そのものが変わるため、スタート時点ではデータが正しく取得されているか確認が必要です。また、「平均値」は何を表すために使用するのかを確認する必要があり、すべての現象に平均値が適切であるわけではありません。代表値が正しく算出されているかどうかは、確認できれば行うべきです。例えば、前月や前年同月と比較して、結果が適正範囲であるかどうかを確認することが有効です。 標準偏差の目的は何? 「標準偏差」については、業務で適用するケースがほとんどなく、代表値同士を比較して分析する機会が少なかったと感じています。しかし、標準偏差を確認することで、実際のばらつき具合を把握できる場合があります。 データ推移をどう捉える? また、数字だけの表が緑・赤・黄に色分けされているなど、見た目でわかりやすくしていますが、これが単月でしか使用されていない現状があります。数ヶ月ごとのデータ推移を比較し、グラフ化することで、情報をより深く読み取ることが可能になります。 新たな可視化方法は? 可視化においては、円グラフやヒストグラムを多用していますが、それ以外の手法を取り入れることが少ないと気付きました。他の表現方法を取り入れ、第三者に訴える視覚的なグラフを作ることを試みたいと思います。むしろ、意図的に不適切なグラフも作成してみて、それがどのように不適切に見えるかを学ぶことも重要です。

クリティカルシンキング入門

コミュニケーション術で説得力アップ!

説明は本当に伝わる? 相手に説明する際に、伝わっていないと感じることが多くありました。これまで、その理由について深く考えることはありませんでしたが、今回の講義を通じて様々な要因に気づきました。例えば、論理の飛躍や理由が適切でないことなどが挙げられます。今後は、ピラミッドストラクチャーやロジックツリーを活用し、相手の立場で必要な要素が抜け漏れていないかを確認した上で、論を立てていきたいと思います。 上司は何を求める? 企画承認会で上司に承認を得る際には、必要な観点が抜け漏れていないか、ピラミッドストラクチャーを使って確認しようと思います。 話を聞く心得は? また、相手の話を聞く際にも、自分が伝える側だけでなく、意見を求められる機会が多々あります。その際、聞いた話に論理の飛躍がないか、理由が適切か、といった視点を持ちながら意見を受け止めていきたいと考えています。 メール伝達の秘訣は? 情報共有のためにメールをまとめて発信する機会が頻繁にあります。その際には、相手にとって必要な情報が的確に伝わるような文書を作成するよう心掛けます。 年末総括の評価は? さらに、年末に向けた総括資料の作成では、担当する業務領域のプロモーション計画が適切であったか、あるいは効果があったかを総括する必要があります。前回の講義で学んだデータ活用法と、今回学んだ文章のポイントを踏まえ、相手に伝わる表現を洗練させたいと思います。

データ・アナリティクス入門

仮説とデータで切り開く未来

データ分析の流れはどうなる? 講座全体を通して、データ分析の流れを構築する大切さを改めて認識しました。どのような状況から仮説を立て、どのデータセットを用いて表現するかといったストーリーを意識することができました。各種フレームワークや分析、表現の手法はあくまでメソッドであり、講座前に自学していたため、今回はそれらの手法をいかに組み合わせてゴールに近づくかが重要だと感じています。 会社での分析はどう進む? 現在、新しい会社で財務会計を担当しており、上記の資料やデータを集めながら一工夫加えた分析と仮説を展開する予定です。具体的な運用はまだ未定ではありますが、原価や経費、売上のデータ分析にも今後取り組んでいきたいと考えています。 学びの道はどこへ? 以前から学びたいと思っていた分野ですので、今後の学びの方向性として以下の点を進めていくつもりです。まず、統計学をきちんと学び上げ、社会人向けの良書や統計検定の復習を通じて知識の向上を目指します。また、今回の講座で学んだマーケティングや他の考え方とデータ分析を組み合わせるため、以前かじったマーケティングについても更に深掘りしたいと思います。 ITスキルはどう磨く? さらに、Python、SQL、データベース構築、クラウド技術など、データ分析に必要なIT分野の知識も広げる計画です。資格検定の受験も視野に入れながら、体系的に学んでいきたいと思います。

データ・アナリティクス入門

数値が導く学びの冒険

数字はどう見える? まず、数字の見方について考えると、仮説を立てた上でデータを収集し、その後の分析で仮説の検証を行うという流れが基本だと感じました。AIを使って情報を収集する場合でも、自分なりの考えを持ち、AIから得られた情報と自分の意見を照らし合わせることが大切です。もしも自分の予想と結果が異なった場合、その違いがどこから生じたのかを考えることで、新たな学びのヒントが得られると実感しています。 代表値はどう見る? 次に、データの見方としては、代表値に注目しました。単純平均、加重平均、幾何平均、中央値など、データの性質や目的に応じて使い分けることが必要です。また、散らばりを示す指標としては標準偏差があり、これらの数値をグラフ化することで、直感的に状況を把握できる点も魅力的だと思いました。 業務の数値活用は? 普段の業務では、商品の売上や原価、コストダウンの検討などで、いろいろな平均値を算出することが新たな発見につながるのではないかと感じています。そして、その結果を他者に説明する際に、グラフを活用することで、理解を深め、合意形成をスムーズに進めることができると確信しています。 AIで何を発見? 日常の業務の中で、実際に数値をAIに入力して計算やグラフ化を試みることで、これまで気づかなかった事実や見逃していた視点を発見できるのではないかという期待があります。来週には、何かの案件で試してみるつもりです。

クリティカルシンキング入門

データ分析で新発見!視点の転換術

売上分析の課題とは? 商品に関する売上分析を行う際、数値データを基に顧客層を分類して分析を進めることがあります。しかし、その分類方法に悩むことが少なくありません。分類後、もし特に傾向が見られなかった場合、それは新たな発見と受け止め、他の視点から見直す機会とすることで、時間を有効に使いたいと思います。 データを効果的に分解するには? 売上データの分解に関しては、講義で学んだように「年代」という一つの軸でも様々な区分が可能です。10歳刻み、または18歳以下、22歳以下、39歳以下など、異なるグルーピングによって見えてくるデータが変わります。分解時には、他にも分け方の可能性がないかを考えていくことが重要です。 結論を急がないための思考法 データからの考察を行う際、結果が見えた時点で急いで結論を出しがちです。しかし、その前に「本当にその結論で良いのか?」と疑問を持ち、再度見直す時間を設けるように心掛けたいです。 視覚的分析がもたらす効果とは? まずは視覚的にデータを確認することが肝心です。数値を頭の中だけで捉えるのではなく、見やすい表やグラフを作成し、比率や色を効果的に使うことで、直感的に理解できるよう努めます。そして、分析結果を迅速に分解するために、どのように分類するかということに特別な時間をかけるのではなく、分解した後で何が見えてきたのか、次にどう行動するべきかという考察に時間を注力したいと思います。

クリティカルシンキング入門

問いと内省で開く成長の扉

問いの出発点は? まず最初に、常に問いを立てる姿勢が大切だと感じています。抽象的な問いをそのまま受け止めず、具体的な内容に落とし込むためには、出発点そのものを疑うことが必要です。自分が今何に答えようとしているのか、常に意識することで、無駄な情報に振り回されるのを防げると考えます。 学びは実践できた? 講義を受けたときは学んだ気になっていた部分も、実際に実践してみると忘れてしまっていることが多いと痛感しています。そこで、反復して復習し、学びを確実なものにする努力が必要だと感じました。 問いと仮説は合ってる? また、データ分析や示唆出しの骨子を作成するときは、まず何に答えようとしているのか、その問いと仮説を明確に立てることがポイントです。資料作成に熱中するあまり、本来の目的から逸れてしまわないよう、問いに立ち返ることが効果的だと思います。 フィードバックは活かせる? さらに、月次の振り返り発表では、他のメンバーの資料を事前に読み込み、フィードバックの質を上げることに努めています。普段、上位の方々との会話では迎合しやすい自分を見直し、しっかりと自分でイシューを考える意識を持つようになりました。 内省で成長中? 毎日終業前の15分間は内省の時間として、今日学んだことが実践できたかを必ず振り返るようにしています。この内省を通して、小さな気づきを積み重ね、常に自己成長を意識するように努めています。

クリティカルシンキング入門

ビジュアルで伝える!メッセージ術

どう見せれば伝わる? 相手に伝わる表現を考える際、文章だけでなく、色やフォント、グラフ、図表といった見せ方にも気を配ることが重要だと感じました。自然な目線の動きを意識し、視覚的な要素がメッセージを適切に伝えるよう工夫したいです。 資料作成で気をつける点は? 私の仕事では、既に決まったフォーマットや図表を使って資料を作成することが求められています。そのため、自らグラフや図表を作成することはできませんが、自分が考えたメッセージを図表に基づき、正確な日本語と適切な表現でお伝えすることが重要だと考えています。社内の企画書に関しては、自分がゼロから作り上げることができるため、メッセージと図表が不一致になることを避け、メッセージを効果的に伝えられる可視化を心がける必要があります。 報告で何を重視すべき? お客様への報告では、特に次の二つの点に注意したいです。一つ目は、伝えたいメッセージとそれをサポートする図表がしっかり一致しているか確認することです。メッセージと図表が一致しないと、受け手に違和感を与えるため、ここは十分に意識したいと思います。二つ目は、お客様の立場に立って受け取りたいメッセージであるかどうかを考えることです。データの解釈は立場によって異なるので、まずはお客様の視点に立って解釈し、その上で自分の考えを求められた際に、自信を持って自分の解釈を伝えられるよう準備をしておきたいと考えています。

データ・アナリティクス入門

仮説立ての新技術でユーザー獲得倍増へ

仮説立ての重要性をどう理解した? 仮説を立てることについての理解が深まりました。これまで、仮説を考えるプロセスがわからず、思いつきや一部のデータに偏った仮説立てをしていました。それがよくないと気づいてはいたものの、他の手段を考える余裕がなかったり、時間が限られていたりして、そのままにしてしまっていました。しかし、今回の学習により、3C(市場・顧客、競合、自社)を網羅して複数の仮説を立て、その上で4P(商品、価格、場所、プロモーション)のフレームワークを活用して網羅的に検証することが大事だと理解しました。 新規ユーザー獲得の戦略は? この学びを二つの業務において活用したいと考えています。 まず、自社サービスの新規ユーザー獲得導線の増強に活用したいと思います。現在、オウンドメディアの記事がある程度の検索表示回数や順位を保てるようになっているので、さらなる表示回数の増加と新規登録への導線強化を目指しています。具体的には、メディアの3Cのうち「市場」と「競合」を4Pのフレームワークを使って網羅的に検証し、新しい仮説を立てて実践してみたいと考えています。 既存ユーザーへのアプローチは? また、既存ユーザーについても同様に4Pフレームワークを活用し、新規獲得に向けた分析を行います。具体的には、現状のユーザー行動を分析し、ゴールまでの導線を仮説立てして検証し、改善策を見つけ出したいと考えています。

データ・アナリティクス入門

なぜ?を突き詰める実践の知恵

原因の深掘りは? トヨタ式「5 Why」を活用し、表面的な原因だけにとどまらず根本原因へと掘り下げる手法が、知識としてだけでなく実践の糸口となった点が印象に残りました。 複数策はどう? また、解決策の検討では、一案に固執せず複数の選択肢を洗い出し、データや定性情報をもとに実現可能性・効果・コストを比較するプロセスがとても参考になりました。さらに、A/Bテストを活用することで条件を統一しながら柔軟に施策を検証していく方法も有効だと感じました。 本質を見抜く? 総合演習を通じて、データを多角的な視点―性別や年齢、曜日、クラスレベルなど―で分解し分析することで、課題の本質を見出す大切さを学びました。アンケート結果と生徒のコメントから、具体的な不満点が明らかになり、問題解決の手がかりをつかむことができました。 なぜを追求する? また、複数の仮説を立て「なぜ?」を繰り返し問うことで、定量データと現場感覚を両立させたアプローチの重要性を実感しました。目的を明確にし、何を改善するのかを起点に指標や手法を選ぶ姿勢は、実際の改善策を実行する上での大きな指針となりました。 具体策は何? 特に、社員の離職率改善を例に、採用からオンボーディング、定着施策までの各段階における仮説立案と検証の流れを学ぶことで、短期・中期・長期のステップで具体的なアクションプランを策定する手法が実践的であると感じました。

データ・アナリティクス入門

学びとデータのワクワク発見

データ集約はどう行う? 今週は、データの見方を学びました。まず、データを数値に集約する方法として、代表値と散らばりの考え方を理解しました。代表値には平均、荷重平均、幾何平均、中央値などがあり、よく使われる平均値は外れ値に弱いことから、場合によっては中央値が用いられることもあると知りました。また、状況に応じて数値に重みを加える荷重平均や、売上の変化率などに使われる幾何平均がある点も印象的でした。 標準偏差の意味は? 次に、データの散らばりを示す標準偏差について学びました。標準偏差は、平均値からのばらつきを表し、その値が大きいとデータが広く散らばり、小さいと平均値近くに集まっていることを意味します。 分析方法をどう考える? さらに、集約されたデータを分析する際のアプローチについても考えました。一つは、特徴的な箇所に着目する方法、もう一つはデータ間の比較を通じて差異を見る方法です。いずれの方法でも、グラフを見る前に仮説を立て、そのギャップについて深掘りすることが、良い分析につながると感じました。 全体把握の重要性は? 最後に、仕事上でデータを扱う際、自分の仮説の確認だけに偏らず、まずは代表値やばらつきなどの基本的な数値を俯瞰し、対象のデータ群全体を把握することの大切さを再認識しました。その上で、加工されたデータを見ることで、より客観的かつストーリーとしてデータを理解できると考えています。

クリティカルシンキング入門

分解思考で拓くビジネス洞察

どう分析すべき? データの分け方に工夫を凝らすことで、その背景にあるビジネス状況をより的確に表現できることを学びました。単に漫然と分析するのではなく、まずはビジネス自体を深く理解し、その特性を把握した上で適切な仮説を立てるアプローチが重要だと感じました。 プロセスは必要? また、これまで「MECE=層別分解・変数分解」という理解でありましたが、今回、プロセス分解の視点にも改めて注目することになりました。問題が生じる「場所」を特定する際、この新たな視点が非常に有効だと実感しています。 保険契約の見方は? グループ会社の保険契約状況の見える化においては、同一保険の加入状況を売上金額、保険料、人員数、事業セグメントといった切り口で層別分解し、また対象資産と保険料率による変数分解を行うことが考えられます。同様に、業務効率化を図る際も、まずは業務プロセス自体を検証し、プロセス分解を通じて効率向上の余地がある部分を明確にすることが求められると感じました。 全体はどう見える? 今後は、入手した対象データに対して様々な切り口での見える化を実施し、そこから読み解かれる課題や方向性を対話を通して共通認識にまとめ、実際の行動に結びつけていきたいと考えています。場当たり的な改善ではなく、全体プロセスをMECEの視点で分解して俯瞰的に分析することで、より効果的な取り組みを優先的に進めていく所存です。
AIコーチング導線バナー

「表 × データ」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right