クリティカルシンキング入門

問い続けて未来を変える

なぜ目的を重視する? 常に目的を意識し、自分の思考の癖を理解するとともに、問い続けることの重要性を学びました。これまでは、自身の経験則に頼り、安易な解決策に走っていた点に気付かされました。今後は、問題の本質を的確に捉える思考力を身につけたいと考えています。 組織会議はどう整理? 半期ごとに担当する組織のアクションプランを作成する際は、現状、課題、対策を論理的に整理し、より成果に直結するプラン作りを心掛けていきます。また、社内会議においても、問題の核心を正確に把握し、適切な提案ができるよう努めていきたいと思います。 なぜ毎日問いかける? さらに、日常生活においても「なぜ、何のために」という問い掛けを習慣づけ、常に深く考える姿勢を実践していきます。加えて、毎週確実にインプットの時間を確保し、学んだ知識を業務で実践するアウトプットを行い、上司や同僚からのフィードバックも受けながら成長を続けていく所存です。

リーダーシップ・キャリアビジョン入門

共通ゴールで育む信頼のリーダーシップ

リーダーシップって何? リーダーシップは、単に役職や立場によって発揮されるものではなく、日々の行動で示し、信頼関係を築く中で生まれるものだと考えています。また、状況に応じた方法を選ぶ柔軟性も、効果的なリーダーシップには欠かせません。 ゴールはどう確認? まず最も重要なのは、共通のゴールを明確にすることです。各メンバーが担当する業務について、最初に目指すべき姿を互いに確認し合い、一致したイメージを持つことで、結果のブレを防ぐことができます。その上で、自主性を尊重しながら進捗や状況を共有し、必要に応じたフォローアップを行う体制が大切です。 疑問はすぐ解決? 次に、疑問があればすぐに確認すること、そしてそのタイミングで適切なサポートを提供することが求められます。誤った理解のままタスクを進めてしまうリスクを減らすために、常に相互確認とフォローを意識し、状況をしっかりと把握することが重要です。

データ・アナリティクス入門

挑戦と成長!ロジック思考の軌跡

アプローチはどう? 問題解決のアプローチとして、「what、where、how、why」を意識することが非常に印象に残りました。同時に、分析において要素を漏れなく、ダブりなく分けるmeceの考え方にも大変共感しています。 要因分析は? 担当している障害分析の業務では、要因分析でmeceを意識して分割することが重要だと感じています。しかし、実際の作業では、完全にmeceを実現するのは難しく、ロジックツリーを併用しながら進めていく必要があると考えています。 ギャップはどう? そのため、まずはあるべき姿とのギャップに着目し、meceを意識しながら自ら手を動かしてロジックツリーを作成することに取り組もうと思っています。経験を積むことで、ロジックツリーの精度も次第に向上していくはずです。 協力はどう? もちろん、作業の途中では他のメンバーの知見を取り入れることも重要だと考えています。

データ・アナリティクス入門

不安から自信へ変わる実践法

比較と伝え方は? データ分析においては、常に比較する姿勢を忘れず、大切なポイントだと実感しています。また、ビジュアル化する際には、これまで自身が慣れ親しんできたグラフだけでなく、伝えたい情報に最も適した表現方法を選ぶことを意識しています。 経験はどう活かす? 業務での分析経験があるため、実際の活用イメージは湧きやすいです。これまでは自己流で学んでいたため、考え方や手法に不安を感じることもありましたが、体系的に学ぶことで自信を持って活用できるようになりました。 仮説と検証は? 具体的には、まず仮説を立て、その後、比較対象を検討してバイアスを排除しつつデータを見るよう努めています。また、分析結果に関しては、担当者間でできる限り議論を重ね、さまざまな視点から検証することを心がけています。さらに、ビジュアル化の際は、誰が見ても正しく、わかりやすく伝えることを意識しています。

データ・アナリティクス入門

賃貸営業に役立つロジカル思考の実践

ステップ思考で目標達成? これまで漠然と進めていたことについて、「What」「Where」「Why」「How」というステップで考えることで、目標に早く到達できると感じました。また、ロジックツリーを用いて、もれなく重複なく(MECE)の分析方法を学びました。しかし、頭で理解するだけでなく、やはり実践を通じた訓練が必要だとも感じました。 業務データ活用の重要性 私は賃貸住宅の入居者募集業務を担当しています。物件データや毎月の入居者・退去者のデータをもとに、どのような傾向があるのかを見極め、売上や利益を伸ばすための営業戦略に応用できそうです。 視覚化で理論を実践? さらに、ロジックツリーやMECEについても、理論の理解だけでなく、実際に手を動かして試してみることが重要だと感じました。日常業務の様々な場面で、可能な限り図や文字を用いて視覚化し、訓練して習得していきたいと思います。

データ・アナリティクス入門

MECEで切り拓く論理の未来

MECEと分解のポイントは? MECEの手法を通して、漏れなく重複のない考え方の重要性を学びました。また、ロジックツリーを用いることで物事を分解して考える方法にも触れました。ただし、細かく分解しすぎるのではなく、適度な粒度で整理することがちょうどよいと感じました。 製品サポートはどう変わる? 個人的な感覚に頼るのではなく、フレームワークを活用することで、よりロジカルかつ具体的に意見を伝えることができると思います。私の担当している製品サポート業務では、お客様からの問い合わせ対応や内部連携の課題があるため、業務をさらに整理して取り組む必要があると感じました。 課題解決のヒントは? 今後は、ロジックツリーを活用して課題を分解し、詳細に洗い出してみます。さらに、MECEの観点から整理されているかを再確認し、どこに課題があるのかを特定した上で、具体的な解決策を検討していく予定です。

データ・アナリティクス入門

データ比較で見える改善のヒント

データ分析に何を学んだのか? データ分析とは、比較することが重要であると学びました。特に、異なる要素を比較する際には、同じ条件下で行うことが大切です。また、周囲に結果を共有する際には、グラフを活用して直感的に理解できるアウトプットを作成する工夫も必要です。 クライアントのフィードバックはどう活かす? 私はサポート業務を担当しており、クライアントからのフィードバックをアンケート形式で収集しています。昨年との比較や、NPSとドライバー項目の相関を分析することで、組織の強みや弱みを明確に把握し、課題を抽出して解決に向けたアクションを実施していきたいと考えています。 定性的なデータの課題は? これまで、フィードバックから得られるのは定性的なデータのみで、昨年との比較やスコアが低下した理由の分析が不足していました。今後は、これらの点を深掘りできる力を身に付けたいと思います。

データ・アナリティクス入門

受講生が実感する学びの変革

目標はどう意味づけ? 目標設定は、データ分析のみならず、学び全般にとっても非常に重要だと再認識しました。受講前に描いていた理想像よりも、学びを終えた今の自分は実践できることが増え、単なる分析のプロから、ビジネス現場で分析手法を効果的に活用するプロへと成長できたと感じます。 活かし方はどうして? この学びは、日常のあらゆる業務に活かしていきたいと思います。データ分析の知見が、問題解決や新たな施策の立案に大いに役立つと理解したため、業務全体でその手法を意識していくつもりです。 従来手法は適切? また、現在の担当業務を見直すことで、従来の方法が本当に適切であったのか、見逃している課題はなかったのかを改めて点検していこうと考えています。その結果を踏まえ、今回の受講で得た実体験の知見を活かし、今後必要となる知識やスキルの習得にも取り組んでいきたいです。

データ・アナリティクス入門

仮説で広がる学びの未来

仮説思考はなぜ重要? データ分析において仮説思考が重要であると実感しました。しかし、まだ完全に身についていないため、今後の業務の中で積極的に意識し、訓練していく必要があると感じています。理解したつもりでも、実際に言葉にして表現する際には苦労することもありました。 経験則から何が変わる? 今回の学びを生かし、所属する部門で担当している市場動向や契約に関するデータの収集と分析に、従来の経験則に基づく判断から仮説思考に基づいた立案へとシフトしていきたいと考えています。 言語化はどうする? さらに、言語化の訓練を重ねることで、仕事はもちろん日常生活においても仮説思考プロセスを意識して課題に取り組む習慣を身につけたいと思います。そして、適切な結論を導き出すために、さまざまなフレームワークや手法の活用を習慣化していく所存です。

クリティカルシンキング入門

新しいデータ分析手法で業務効率化に成功!

データ加工の基本技術とは? データの加工の仕方、分け方の工夫、分解の注意点の3つを学びました。特に注意が必要だと感じたのは、分け方の工夫と分解の注意点です。手を動かしてそれらしいデータが見えた際にすぐに結論を出してしまうと、誤った判断に繋がる可能性があると感じました。 商談データ分析の新アプローチ? 私の業務では、特に商談や受注に関するデータの分析を担当しています。これまでとは異なる切り口でデータを集計し、同時に新しい仮説をもとにデータを分解してみることは、すぐに実践できそうです。 仮説を活用したデータの再確認 商談や受注データの吸い出しを行う際には、常に新しい仮説を持って取り組むことが重要です。そして、一見それらしいデータが見えても、一段階深く集計の漏れや新しい切り口、データの正確性を再確認することが必要です。

「業務 × 担当」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right