データ・アナリティクス入門

実践が磨くデータ分析の極意

分析の目的は? データ分析の基本は、正確な手法の選択とアウトプットの工夫にあります。まずは分析の目的をはっきりさせ、整理すべき具体的な要素をまとめることで、比較対象や評価基準を設定することが重要です。また、グラフの種類やデータの加工など、第三者が見ても客観的な判断ができるような見せ方を工夫する点にも留意しました。 マネージャーとの調整は? ヘルスケア領域のコンサルティング業務においては、実際に分析に取り掛かる前に、マネージャーとの認識統一が欠かせません。分析する項目の選定や、加工の必要性、さらには比較対象や基準、定義の設定について事前の調整を行うことで、適切な手法を選択できると実感しました。 数字の示唆は? また、定量的なデータ分析は単に数値を示すだけでなく、その数値からどのような示唆を得るかが大切です。データ分析の結果をマネージャーに提出する前に、伝えたいメッセージを明確にすることの重要性を理解し、背景や目的の整理、現状分析、課題抽出、解決策という業務プロセス全体の中で、正しいデータ分析方法とそのアウトプットが不可欠であると再認識しました。

データ・アナリティクス入門

数値の裏に潜む学びのヒント

データ比較の基本は? データ分析は比較という原則に基づいており、数値同士の比較を通してデータの実態や分布を探る作業です。まず、データの中心に位置する代表値を把握し、その上でデータがどのように散らばっているかを確認することが基本となります。代表値としては、単純平均のほか、加重平均、幾何平均、中央値が用いられ、散らばりを評価するには標準偏差の算出が有効です。 業務で分布を確認すべき? 普段の業務においては、データの分布を確認する試みが十分になされていないと感じます。分布を求めるためには、まずデータを分類するための項目が必要です。そのため、データ加工を前提として目的を明確にしながら項目を選定することが重要です。分析の目的と加工という手段を意識して検討することが、成功のポイントだと実感しました。 算出方法をどう活かす? 今回紹介された算出方法を効果的に活用するためには、標準偏差の算出、ヒストグラムの作成、加重平均や幾何平均を使いこなすスキルが求められます。今後は、これらの技法を実践的な練習問題などで訓練し、習得していきたいと考えています。

データ・アナリティクス入門

平均再発見!生データが語る学び

平均って何だろう? 基本的な代表値である平均とばらつきを再確認しました。また、関連するフレームワークの動画を通じて、単純平均、加重平均、そして幾何平均といった具体的な計算方法が存在することを学び、以前は知っていた幾何平均についても、計算方法や名称を含めて改めて理解することができました。 中央値はなぜ大切? 技術職として、日常的に平均値や標準偏差を用いたばらつきの分析を行っています。中央値については、その定義や目的を理解しているものの、実際の業務では頻繁に使用することはありません。しかし、中央値が持つ目的を意識し、グラフや図を用いて全体の分布や外れ値の有無を確認することで、解析の正確性を担保していると感じています。 外れ値の確認方法は? また、普段からデータに触れる中で、改めて図での表示を行い、データの前処理における外れ値の存在を意識することの重要性を再認識しました。どの業務においても、正しい目的意識を持つことが根幹であると実感しており、今回学んだ単純平均、加重平均、幾何平均を活用して、目的に即した正確な解析を進めていきたいと考えています。

データ・アナリティクス入門

柔軟な仮説が未来を拓く

初期仮説の危険性は? 仮説は初めから決めつけず、幅広い視点で持つことが大切です。あらかじめ仮説を立て、それに基づいて検証するため、もし初期の仮説に誤りがあれば、その後の工程にも大きな影響が出る可能性があります。 計画的データ収集は? また、仮説を検証する際には、必要なデータを計画的に収集することが求められます。必ずしも全ての情報が揃っているとは限らないため、誰にどのように情報を収集するか、目的に沿って進める必要があります。 売上データで何発見? 日々の業務で売上データを見る中で、発生した事象に対してまずは幅広く仮説を出すことが有効だと感じました。これまで漠然とした感覚で仮説の検証に取り組んでいたため、今後はより意識的に取り組むことが必要だと思います。 周囲の意見は頼も? 仮説を立てる際は、自分一人で考えるのではなく、周囲のメンバーからの意見も取り入れ、網羅性を高めるよう努めます。過去の経験や先入観をなるべく排除し、フラットな視点で物事を俯瞰することを心がけるとともに、仮説検証の目的を踏まえて最適なデータ収集方法を選択していきます。

戦略思考入門

業務の効率化は「やらないこと」で決まる

優先順位付けの重要性とは? リソースは有限であり、戦略的に物事を進めるためには優先順位をつけることが重要であると理解しました。何をやり、何を捨てるのかを決めるには、判断基準を設ける必要があります。特に、投資対効果を算出することが一つのポイントです。根拠のある判断基準があれば、後ろ向きな印象のある「やらない/捨てる」という決断も納得感を持って周囲に説明できるとわかりました。 実証実験での課題は? 現在の業務において、「何をやらないか」を決められないことが大きな課題だと感じています。特に実証実験を始める際、規模や検証すべき内容(今回は何を検証しないのか)を明確にすることが、有限なリソースを効率的に活用し、仮説検証の精度を高めるために役立ちます。 効果的な仮説検証の進め方 これからは、各フィールドで進める実証実験の目的を明確にし、検証すべき仮説を見直していきます。チームで検証すべき仮説を洗い出し、どの仮説を優先して検証するかをグループ会議で議論します。また、担当フィールドで想定している開発機能も、その優先順位に基づいて絞り込んでいく予定です。

データ・アナリティクス入門

小さな疑問から大きな発見へ

何故課題意識は必要? 分析の目的や課題意識を明確にすることで、日常の業務だけでなく、普段目にする分析データについても「なぜ?」と考える習慣が身につきました。例えば、ニュース記事で医師不足が取り上げられる場合、その背後にある分析の意図や解決すべき課題を自分なりに考察するきっかけとなりました。 施策評価はどう? また、業務で複数の施策を企画・実行する中で、効果を評価するための分析が重要だと感じています。中長期的な戦略の実行に際し、連続性のある施策を実施するためにも、小さな施策のブラッシュアップを繰り返す必要があると考えています。たとえば、アプリへのログインプロセスを細かく分解し、特に初回ログイン率の向上に向けた分析を進めています。 情報取得は万全? さらに、戦略立案の段階から必要な情報やデータが適切に取得できているかを精査し、取得できていないデータにはタグ付けなどの対応を実施して、常に分析が可能な状態を作り上げています。同じ条件で定期的にログの確認やレポート作成を行う仕組みを整備することで、継続的な定点観測が可能になりました。

データ・アナリティクス入門

目的が明日のヒントになる

問題点は何でしょう? 何が問題かを明確にし、結論のイメージを持ちながら取り組むことが大切だと感じました。何を解決したいのかを考えることで、目的に立ち返ることができるため、数字をどのようなグラフで表現するか悩む場面でも、考え方の整理が進みました。データ分析においては、仮説思考が基本であるとも実感しています。 プロジェクトの目的は? 業務改善プロジェクトに取り組む際には、まず目的の設定が不可欠です。進める中で何を解決したいのか、そして最終的な結論のイメージを持ちながら作業を進めたいと考えています。現状では、システムや運用の活用率といったデータが中心ですが、活用と非活用という単純な区分のみで目的に沿った分析が可能かどうか、再度検討する必要があるように思います。 誰にでも分かる目的は? 目的設定については、誰にでもすぐにイメージできるような分かりやすいものにすることが重要です。現在取り扱っているデータから新たな気づきが得られないか、また、ほかのデータを追加することで見えてくる可能性があるかどうかにも注目していきたいと思います。

データ・アナリティクス入門

データ分析を変える前に目的確認の力

データ分析の目的すり合わせとは? 講義内のグループワークでは、上司と部下の間でデータ分析の目的をしっかりとすり合わせる重要性についての議論が特に印象的でした。コミュニケーションが一方通行になっていないか、それぞれの思い込みをそのままにしていないか、データ分析に入る前に行うべきことがあると再認識しました。 目的の共有で生まれた変化は? そこで、「データ分析前の目的のすり合わせ」を意識し、今週の業務に取り入れてみました。業務内容としてはデータの取り扱いが簡単なものであっても、その目的を明確に部下に説明すると、彼らの表情が明るくなり、納得感が増したように思います。 データの共有は次にどう活かす? 日々の業務は多種多様なデータの取り扱いの連続です。目的やデータの見方について、社内で共通の認識が確立している場合もあれば、単にデータをまとめて共有するだけで次のアクションにつながらない場合もあることに気づきました。今後は社内でグラウンドデザインの共有を進め、各種データの目的やKPIとしての活用方法について議論を深めていきたいと思います。

クリティカルシンキング入門

課題解決の鍵は「問い」を立てることから

問いを立てることの重要性とは? 課題を適切に捉えるために「問いを立てる」ことの重要性を改めて学びました。今何を課題と考えるべきかを理解することで、業務の結果に大きな影響を与える重要なポイントとなります。ただ問いを立てるだけでなく、その問いを最後まで持ち続け、大きな成果物を得るために周囲と共有し、働きかけることが重要だと感じました。 プロジェクトにどう活用するのか? 現在進めているプロジェクトでは、直面する課題を解決するために、この学びを活用しようと考えています。プロジェクトの目的は単に業務を集約することではなく、現存する課題を解決することです。すべては「問い」を立てることから始まります。 バックオフィス化プロジェクトで何を達成する? 例えば、バックオフィス化プロジェクトの目的を明確にするためには、時(When)、人(Who)、手段(How)の各観点から業務を分解し、現状の課題を見極め、その解決策を考えることが必要です。また、残業時間の問題についても、このプロジェクトを通じて解決策を見つけることを検討していきたいと思います。

リーダーシップ・キャリアビジョン入門

自分軸で再発見!働く喜びのヒント

仕事の本音は何? キャリアアンカーを通じ、自分が仕事で何を大切にしているかを理解できたことは、今後のキャリア形成に大きく役立つと感じました。これまで「社会的な役割」や「家族のため」「お金のため」といった理由で業務に取り組んできましたが、実際に自分の喜びがどこにあるのかを問い直すうちに、今までの考え方とは異なる価値に気付くことができ、改めて仕事に向き合う姿勢を見直すきっかけとなりました。 みんなのキャリアは? また、キャリアアンカーについて会社に提言し、皆がどのような目的意識で仕事に取り組んでいるかを把握したいと考えています。さらに、部下がどのような価値観や動機を持って業務に従事しているのかを理解し、それぞれに合わせたコーチングが実現できればと考えています。 可能であれば、アンケートなどを通して社員一人ひとりのキャリアアンカーを確認し、キャリア・サバイバルの検討に役立てたいと思います。私自身も、日々の業務の中で自分の価値観を意識し、部下に対して適切なキャリア・サバイバルの指導ができるよう努めていきたいと考えています。

データ・アナリティクス入門

データ分析で見つけたWEB改善の秘密

WEBマーケで目指す成果とは? 私の業務はメーカーのWEBマーケティングに関するものであり、そのミッションは新規ユーザーをWEBページに集め、営業に引き渡すことで売上に貢献することです。具体的には、WEBページの閲覧状況を分析し、サイトの改善に役立てています。分析するデータには閲覧URL、流入キーワード、お問い合わせフォーム遷移率、その後の商談化率、売上金額などがあります。 分析の目的設定の重要性 分析においては、まず目的を明確にし、その目的を達成するために必要なデータの選定とどのように加工・分析するかを検討します。やみくもにデータを分析しても意味がないため、仮説を立てた上で分析を行うことが重要です。 業務スキルをどう活かす? 学んだことを業務に活かすために、まずは分析のフレームワークを学び、それを活用できるスキルを身につけました。グループワークを通じて、わかりやすく伝えるスキルも向上させ、学習を業務に積極的にアウトプットしています。これらのスキルと知識を活用して、より良いWEBサイトの作成と改善を目指しています。

データ・アナリティクス入門

仮説で切り拓く成長の道しるべ

ゴール設定はどう? 分析のゴール設定を常に意識し、単にデータ分析が目的化しないように気をつけます。仮説を立て、比較を通じてゴールにたどり着くプロセスを重視し、適切なデータの平均などの指標を選んでいく必要性を感じています。また、比較箇所以外の条件を統一しながら原因箇所を明確に捉えることも大切だと考えています。 複雑データはどう扱う? 人事業務では、多様な角度からのデータが関わるため、分析が目的となって袋小路に入ることが多かったと振り返ります。さまざまな要素が複雑に絡み合って事象が発生している点を念頭に置きつつ、常に分析のゴールを設定しそのゴールに向かって捉え続けること、そして仮説を立てる力を養うことを今後の課題にしたいと思います。 低評価の理由は? まずはエンゲージメント向上を目的とした取り組みから始め、低い評価要素の抽出や、それぞれの項目に対して低評価の理由について仮説を立てながら分析を進めていきたいと考えています。さらに、数値の高い部署と低い部署を比較することで、より具体的かつ実践的な分析を行う方針です。

「業務 × 目的」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right