リーダーシップ・キャリアビジョン入門

フィードバックで職場のコミュニケーション改革

学びを深化させるには? 自分への引き寄せなくして学びは深まらないこと、リーダーシップは当たり前の積み重ねであること、目標や目的に紐付けて考えることが重要であると感じました。相手の考えを引き出し、アクションを支援するためには、伝える前と伝えた後の状況をよく考え、それに基づいて行動することが大切だと思います。 効果的なフィードバック方法は? フィードバックの際には、自分としてどう感じたかを振り返り、その自己評価まで話してもらったうえで、期待に対する評価を伝えることが有効だと学びました。日々のミーティングや部下との面談では、相手の発言をまず受け止め、共感することが大事だと感じています。研修の運営を担当する際も、受講生の意識や目的を確認する内容や会話を取り入れるように意識しています。 権限委譲を進めるには? また、現場への業務移管や権限委譲に向けた評価制度を作成する過程でもエンパワメントの発想を取り入れ、現場との意見交換を重視しています。 対話の重要性をどう実感する? この6週間の学びをお盆の期間中に総復習し、部下との面談や相談の際には、相手の話をよく聞き、自分の考えをきちんと伝えるよう努めています。メールやチャットだけでなく、直接対話する機会を増やし、目的や意図を確認することがさらに重要だと感じています。

データ・アナリティクス入門

データ分析で見つけた新たな気づきと行動力

解決策をどう選ぶ? 適切な解決策を決定する際には、決め打ちせずに他の仮説から導き出されるHowも考慮することが重要だと感じました。自社が現状で何を優先すべきかを考え、解決策同士を比較しながら適切な選択をする必要があります。そのためには、常に目的と優先事項を意識し、立ち戻って再考することが必要だと思います。 行動が生む成果とは? 完璧を求めすぎるあまり、仮説の検証ができない、考えすぎて動けなくなることもあります。ある程度の目途がついた時点でまず行動することが、結果的に良い仮説を生むことになります。 データ整理の新たな切り口 データを切り口を変えて整理する方法について述べます。物流会社で専用アプリを使用してトラックの待機時間を集計していますが、単なる集計だけでは不十分です。時間帯別や事業所別など切り口を変えてデータを整理し、今後の活用方法を示す必要があります。 業務プロセス改善の手順 問題箇所を特定し、各事業所の業務プロセスのどこに起因しているかをグループ内で議論したいと考えています。最終的には、待機時間の集計作業から業務プロセス改善まで話をつなげたいと考えています。そのために、本講座で学んだ「客観的にわかりやすく数値化して説明する」ことを意識しながら、メンバーと議論を続けていこうと思います。

デザイン思考入門

人間味あふれる学びの現場

さまざまな受講生の特徴は? 多様な職業や経歴を持つ受講生が集まっている点が、まず印象に残っています。講座で学ぶデザイン思考は、システマチックかつ洗練されたアプローチに見えながらも、その実践過程は人間中心であり、実際の現場で必要な泥臭い努力が感じられるのが魅力的です。今後6週間のカリキュラムを通じて、社会問題への取り組みなど様々な課題意識を持った方々との交流や議論から、新たな視点と学びを得ることを楽しみにしています。 デジタル活用の進め方は? 自身の業務では、最新のデジタルやAI技術関連の施策を実際の業務に落とし込む際に、デザイン思考のアプローチを活用していこうと考えています。技術の利用自体が目的とならないよう注意しつつ、各社員の業務の生産性や効率性向上を主眼に、利用者である社員を中心に据えたプロセス作りができると期待しています。 現場との連携はどう? また、単にデジタルやAI関連施策を実装するのではなく、実際に業務を担当する社員と積極的にコミュニケーションをとりながら進めることが重要だと考えます。現状の業務プロセスについての課題インタビューや一緒に業務を進める取り組みを通じて、業務理解と担当社員の課題意識をより深く共有することで、施策の価値や利益を関係者に適切に伝えられるようになると確信しています。

マーケティング入門

顧客ニーズを深掘りするヒント

顧客の真のニーズとは何か? 顧客が求めているものが商品やサービスそのものとは限りません。これは「ウォンツ」と呼ばれるものです。「〇〇が欲しい」というのは解決策に過ぎず、「なぜ〇〇が欲しいのか」という目的を突き止めることが重要です。「〇〇が欲しい理由」こそが真のニーズであり、単純に商品やサービス自体を「顧客ニーズ」と捉えないように注意が必要です。 参考になるデプスインタビューの手法 真のニーズを捉えるためにはデプスインタビューなどの手法が有効です。動画で紹介されていた床屋の話は、真のニーズを聞き出す方法として非常に参考になりました。 バックオフィスでのニーズの重要性 バックオフィス業務にも常に相手が存在します。相手からウォンツが提示されたときには、それを注意深く考え、ニーズを捉えるよう努めることが重要です。現在行っているルーティン業務に関しても、常にニーズがあるかどうかを意識しながら進めていくことができると感じました。 コミュニケーションでニーズを把握する方法 相手とのやり取りは対話に限らず、文章(メッセージやメール)で行われることも多いです。そのため、真のニーズを捉えることが難しい場面もあります。理解できないことがあれば、必ず自分が納得するまでしっかりと聞く姿勢を持って業務に取り組んでいきます。

データ・アナリティクス入門

実践で切り拓く学びの扉

A/Bテストは何が見える? A/Bテストは、2つの施策を比較し、どちらがより適しているのかを実際のユーザー行動に基づいて判断する有効な手法です。アメリカ大統領選などの大規模な事例でも用いられている点が印象的で、仮説だけでなく実績に裏打ちされた評価がとても参考になりました。 演習で何を実感した? また、演習を通じて、問題の各要素をステップごとに分解することで、どのデータを抽出すればよいかが具体的に見えてきます。こうしたプロセスは、原因の特定を容易にし、問題解決に向けた新たな視点を提供してくれました。 業務再構築はどう進める? 社内業務の再構築にあたっては、まず課題を洗い出し分類した上で、それぞれの課題のどこに原因があるのかを要素ごとに分解して検証する方法が効果的だと感じました。Howに飛びつく前に、What、Where、Whyの各段階を踏むことで、より論理的に解決策を見いだすことができると思います。 原因探しで見つけたヒントは? さらに、課題に対する取り組みでは、要素を段階ごとに書き出す過程が、問題自体の理解を深め、原因の特定に大いに役立ちました。その後、適切なフレームワークを用いて目的に沿った仮説を立て、多角的な視点から検討することで、より実践的な解析が可能になると実感しました。

データ・アナリティクス入門

データ分析で見つけた成功への鍵

分析の基本は比較にあり? 「分析とは比較である」ということが、今まで感覚的に行っていた私にとって、必須であると改めて理解しました。また、多くの人の前でプレゼンテーションを行うため、データを分析する際には、まず「仮説」を構築した上でデータ加工に取り組んでいました。そのため、明確な目的や主張のない分析は行っていませんでしたが、一方で期待していた比較結果が得られなかった場合には、仮説を素直に見直すことの重要性を認識しました。 新しい業務への挑戦 普段の業務では、「分析とは比較である」という意識が習慣化しています。しかし、これから新しい業務に挑むにあたっても、この「比較」を意識し続けたいと考えています。特に、生存者バイアスのかかったデータに基づく業務になる可能性があるため、失われているデータとの比較を心がけたいと考えています。 成功と失敗事例の見極め あるプロジェクトでは協力業者の選定が多数必要となりますが、彼らが持参するのは成功事例が多いと予想されます。そのため、成功事例の裏に隠れている失敗事例を手に入れ、成功事例だけに基づいた「比較」に陥らないよう注意したいと思っています。直感的に考えたことを「仮説」とし、その後、生存者バイアスを避けた適切なデータを比較・分析し、プロジェクトの成功を目指したいと考えます。

データ・アナリティクス入門

仮説で突き抜ける分析の世界

分析の基本を確認? この講座では、分析とは単にデータをそのまま受け入れるのではなく、要素を分類し比較する作業であることを学びました。現状を鵜呑みにするのではなく、多角的に考え、目的や仮説を明確に持って取り組む重要性が印象に残りました。 分類と比較の仕方は? 具体的には、まず分析の基本として、データを分類することが必要だと再認識しました。そして、その分類された情報を比較することで、より深い理解が得られると感じました。さらに、明確な目的や仮説を持つことで、分析の取り組み方が一層意識的になり、有益な示唆が得られる可能性が高まると実感しました。 実務での分析戦略は? また、現職の業務においては、クライアント向けのマーケティング戦略を立案する際、膨大なデータの中から適切な視点を見出し、効果的な分析を行うことが求められます。目的や仮説を明確に持ちながら、意識的な比較検証を進めていくことで、売上に貢献できるような分析手法を確立していきたいと考えています。 着眼点を模索中? さらに、与えられたデータのどの部分に着目すべきか、どの分析手法を適用すべきかについては、まだ模索している部分もあります。今後は、理論を学びながら実務に直結する知識やスキルを身につけ、より具体的な分析ができるよう努力していきたいと思います。

データ・アナリティクス入門

業務に役立つ分析スキルを身につける方法

予測を立てる重要性は? グラフなどの資料を見る際、自分なりの予測を立て、仮説を立てて実態との違いを確認することは重要です。このプロセスでは、仮説の誤りをマイナスに捉えず、新たな課題や問題に気づく機会として扱うことが求められます。 分析のサイクルをどう回す? 分析の基本である「目的・仮説・データ収集・仮説検証」のサイクルを回すことについては、業務で分析を行う際に疎かになっていたと反省しました。数字に集約した分析を学ぶなかで、代表値(単純平均、加重平均、幾何平均、中央値)や散らばり(標準偏差)のそれぞれが適した状況で使い分けることが重要であると再認識しました。 患者数低下の原因とは? 紹介患者数の低下対策を立案する際、まず分析のプロセスをしっかりと踏むことが大切です。特に目的を明確にすることで、求めたい結果を得るためのポイントとなります。次に、どの視点で分析を進めるかを判断し、グラフや数字を用いて実行していきます。 具体的には、紹介患者数低下の分析では、近隣医療機関からの紹介の減少が課題(目的・問い)となります。減少の要因について仮説を立て、その後、取るべき分析の視点(インパクト・ギャップ・トレンド等)を考慮してデータを収集し、グラフ化・数値化します。最後に、分析結果と仮説を検証し、対策を立案します。

データ・アナリティクス入門

言語化と分析で見える未来

比較ってどう見る? 分析とは比較することであり、これまであまり意識してこなかった点でしたが、意識することで適切な図表や色の検討が可能になります。根底にあるのは目的であり、目的を意識することで、比較して何を伝えたいのかが明確になります。 自分化の意味は? 学びのプロセスにおいて、「言語化」「教訓化」「自分化」は非常に重要な考え方です。特に、教訓化と自分化が自分自身の成長に大きく寄与すると実感しています。 施策にどう活かす? 業務を分析し、施策を練る際には、根拠となる情報を集めて問題点を特定することが有効です。また、「言語化」と「教訓化」を意識することで、会議などで他人の進捗状況を聞いた際に、自分の考えの幅や経験値を広げる一助となっています。 仮説はどう考える? 分析に取り組む際は、目的を常に意識することが大切です。まずは「現状を可視化する」ために図表化を実施し、その結果を踏まえて仮説を立案します。そこから、より限定的な部分の分析を進めることで、精度の高い課題の解決へと結び付けています。 会議はどう捉える? 内部の会議においては、ただ受け身で情報を聞くのではなく、他人の発言をそのまま鵜呑みにせず、原理原則を抽出して自分自身の状況にどう反映できるかを検討することが重要であると感じました。

データ・アナリティクス入門

発見!比較で深まる学びの力

どう比較すべき? 分析とは、対象同士を比較することを意味します。重要なのは、目的に応じた適切な比較対象を選ぶことであり、その選定においてはバイアスがかかりやすい点に十分注意する必要があります。ここで大切なのは、単に目の前のものと比較するのではなく、どのようなものを比較対象とするかが鍵となることです。 テーマの真意は? また、「愛の価値」という一見難解なテーマについても、しっかりと理由付けができたおかげで学びを深めることができました。単なる難題ととらえるのではなく、根拠を持って回答できた点が大きな成果だと感じています。 業務応用はどう活かす? さらに、この分析の手法は、様々な業務に応用可能であると考えます。たとえば、売上の見込みを立てる際には、過去の実績、見積もり件数、出荷待ち製品などの相関関係を把握することで、より精度の高い予測が可能になるはずです。同様に、適切な安全在庫の設定や費用対効果の高い広告選定、さらには攻めるべき市場の選定など、さまざまな場面で活用できると期待しています。 結果のズレは何故? なお、比較分析を行った結果、うまくいかなかった事例についても知見を深めたいと考えています。たとえば、見込みが大きく外れてしまったケースなど、具体的な事例があれば今後の参考にしたいと思います。

データ・アナリティクス入門

数字を超える、比較の妙技

比較と目的はどう考える? 分析において、「比較」と「目的への立ち返り」の大切さを改めて感じました。何かしらの数値をグラフ化して報告するだけでは、かえって分析した気分になってしまい、実際は単なる数字の結果報告に過ぎなかったと認識しています。今後は、目の前の数字だけではなく、適切な比較対象を設定し、分析結果としてしっかり報告できるよう努めたいと考えています。 上司の反応はなぜ? 直近の業務では、状況報告を上司に行った際、好意的な反応を得られず、簡単に取得できる情報だけに依存し、見栄えの良いグラフや表を作成するだけの報告になっていたことを痛感しました。単に数値を並べるだけでなく、それぞれの情報をきちんと比較し、その内容から次の対応や施策を検討できるような報告に改善する必要性を感じています。 次の一手はどうする? そのため、今後の取り組みとして以下の点を意識していきます。 まず、分析の目的を再度明確にすること。 次に、比較する項目や内容について、上司の意見や生成AIのサポートを活用しながら見直しを行うこと。 さらに、定量的な分析だけでなく、定性的な分析も取り入れられるよう検討を進めること。 そして、最終的には目的に沿った次の対応策が検討できるような報告をまとめることを目標とします。

データ・アナリティクス入門

目的再確認で拓く未来

なぜ目的は大切? 分析とは、比較を通して物事を評価するプロセスです。まず、データ収集や具体的な分析を始める前に、はっきりとした目的を設定することが不可欠です。目的が定まらない分析は、結果として次の行動に結びつかず、単なる数字遊びになってしまうリスクがあります。 どのように対象を選ぶ? そのため、目的を明確にし、適切な対象を選ぶとともに、多角的な観点から正しく比較することが大切だと考えます。データ分析に入る前に一度立ち止まり、目的に立ち返る余裕を持つことが、成功への第一歩となります。 どのように傾向を見る? 具体的には、顧客の属性データやアンケート結果から傾向を読み取り、次月以降の施策に役立てています。また、自身の働き方に関しても、どの業務にどれほどの時間を費やしているかを他者と比較し、業務効率の向上を図っています。 どうやって振り返る? このため、毎週金曜日に10~15分間の業務棚卸しの時間を設け、週次および月次での振り返りを実施しています。さらに、1on1などの機会を通じて、業務時間の使い方について他者から意見を聴取し、比較することで、より実践的な改善策を模索しています。一方で、対顧客の分析に関しては、常に目的を再確認し、施策ありきの分析にならないよう注意を払っています。

「業務 × 目的」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right