クリティカルシンキング入門

無意識の壁を超える学びのヒント

考えの枠はどう広げる? 人は無意識のうちに、自身の考え方に制約をかけてしまうことがあります。ドラッグストアや病院での業務を通じて、その実感を得ました。今後、思考を広げるために「視点」「視野」「視座」という3つの要素を意識し、具体的な考えと抽象的な考えを行き来させることを実践していきたいと考えています。 顧客課題は見えてる? また、顧客との接点から感じた課題をもとに、上司や他部署へサービス改善の提案を行う場面に直面することがあります。改善案を検討する際には、さまざまなユーザーの視点、各部署(営業、サポート、開発など)の視野、そして事業全体に与えるインパクトという視座を広く取り入れ、適切なレベルで問題を洗い出すよう努めています。 準備は万全ですか? さらに、上司や他部署のメンバーは前提知識や重視するポイントに違いがあるため、それらを明確にした上で改善案に組み込みます。作成後は、異なる立場からのフィードバックが予想されるため、客観的な視点を取り入れる準備をしておくことが大切だと感じています。

デザイン思考入門

現場で生まれた共感の提案力

現場で何が分かった? IT業界でリサーチに基づくソリューション提案を行う中、デザインシンキングの実践が顧客の真のニーズに沿った提案を可能にすると実感しました。まず、顧客の現場に足を運び、業務を観察して共感を得ることから始め、データに基づいて本質的な課題を特定しました。その後、社内外の関係者を交えたワークショップを通じて多様なアイデアを創出し、モックアップやデモ環境を用いて解決策を可視化した上で、実際のユーザーテストとフィードバックを重ねることで改善を図りました。この一連のプロセスにより、製品機能の提案から脱却し、顧客の真のニーズに応じたソリューションを提供できるようになりました。 対話で見えた本質は? また、現場での観察や対話を通じ、顧客が本当に求めるものを深く理解する重要性を再確認しました。従来の単なる機能アピールから一歩進み、顧客と共に課題解決を目指すことで、信頼関係が築かれたと感じています。今後もデザインシンキングを積極的に取り入れ、顧客視点に立った提案を実践していきたいと思います。

データ・アナリティクス入門

仮説思考で拓く不動産プロジェクトの未来

効果的な仮説立案方法とは? 仮説を立てる際には、3C(市場・顧客、競合、自社)と4P(商品、価格、場所、プロモーション)のフレームワークを使うことで、網羅的に考えることができます。その後、仮説を立案し、事実に基づいて仮説を絞り込む必要があります。仮説は結論の仮説と問題解決の仮説に分類できます。 データ整理のメリットは? 仮説検証の際に、自分の仮説を多く立てることができるようになります。また、手持ちのデータがどのフレームワークに関するものかを整理できるようになると、プロジェクトを始める際に手持ちのデータの種類と不足しているデータを把握できます。特に、自社や顧客については理解が深まっているものの、競合のデータについては入手が難しいため、今後の課題として力を入れたいと考えています。 不動産PJでの仮説思考は? 不動産に関わるプロジェクトを行っているため、海外の宅地購入や新規事業のPJを評価する際にも同様の仮説思考が役立ちます。特にエリア性と価格妥当性に対する理解を深めておきたいと思います。

アカウンティング入門

数字で読み解く経営戦略

全体像はどう理解? アカウンティング入門を受講することで、これまで漠然としていた数字の意味やその構成が理解できるようになりました。特に、個々の数字ばかりを見ていた自分にとって、P/L全体を俯瞰する大切さを実感する機会となりました。 フレームワークはどう使う? さらに、自社の事業活動を適切なフレームワークに当てはめ、数字全体を読み解く意識を持つようになりました。自社と競合を比較する際には、顧客や提供価値を念頭に置くことが重要であり、P/LやB/Sから各種課題を論理的に整理することができるようになりました。原価高騰による減益要因や棚卸資産の増加など、具体的な経営課題に対しても効果的に対応できると感じています。 学びをどう伝える? この学びを生かし、自部門のミーティングではまず自社の顧客・提供価値を重視する意義を伝え、続いてP/LやB/Sの読み解き方を共に学んでいく方針です。部下にも今の経営課題を数字を通して理解し、業務の効率化に結びつけられるようサポートしていきたいと考えています。

デザイン思考入門

お客様起点で描く学びの未来

アイディアは何故大切? 思いついたアイディアは、すぐに書き留めアウトプットすることで、第三者からの反応や意見を取り入れ、改良改善に繋げることが大変有効だと感じました。その際、AIの活用も新たな視点を提供してくれる点が参考になりました。 顧客視点はなぜ重要? また、自分たちが売りたいものを考えるのではなく、まずターゲットとなるお客様が抱える課題に目を向け、自分たちの商品がどのようにその課題にアプローチできるかを検討する「お客様起点」の視点が重要だと実感しました。目先の業務効率にとらわれず、各業務の目的や影響先を広い視野で捉えることが、より効果的な取り組みへと導くと感じています。 どう選ぶべき管理ツール? 現在、顧客管理ツールの見直しを進めています。数ある提案の中から最適なものを選ぶためにも、まず自分たちが目指すべき姿やゴールを改めて確認し、希望やアイディアは制限せずに協力先へ積極的にアウトプットすることが成功の鍵だと感じました。今後も引き続き、より良い改善に努めていきます。

データ・アナリティクス入門

データを読む力で広がる新視点

数字の壁は本当? データ分析に関して、「数字が得意でないとできない」という思い込みがありましたが、実際にはデータの読解力が重要だと感じました。データと情報を比較することで状況を把握しやすくしたり、意思決定をしやすくする手法の一つとして、どのような目的や仮説で分析を行うのかが最も重要な根幹部分であることに気づきました。 旅行動向はどう? 具体的な例として、訪日旅行観光客の市場動向と顧客行動の把握があります。どの国からの訪日観光客が増えているか、減っているか、滞在日数、1人当たりの消費額、訪問都市やその数、そして訪日旅行に求めていることや課題について分析しました。 立ち位置はどう評価? 会社が策定している中期経営計画の目標達成のためには、訪日旅行という分野において、自社が業界内でどのような立ち位置や状態になるべきかを明確にする必要があります。そして、その状態を達成するために必要となる情報やデータを考慮し、どのような戦略を打ち出すべきなのかについて検討することが求められます。

クリティカルシンキング入門

相手に伝わる思考整理の術

結論から伝える理由は? 今週の学習を通じて得た最も印象深い教訓は、「相手に伝える際は結論から述べること」と「その根拠となる理由を柱として分類し、相手に合わせて具体的に提示すること」です。これまでを振り返ると、私は思いついたことを整理せずにバラバラと伝えていたことが多かったと感じました。 マーケ戦略はどう組み立て? 新規事業のマーケティング戦略を考える際、市場分析や顧客の課題を整理して結論を導くために、まず結論を述べ、その根拠となる理由を明確にすることに努めたいと思います。そして、さらにこれらの具体例を分解し、自分自身の考えも整理しながら、相手に伝わるように組み立てて話すことを徹底します。 アイデア整理のコツは? まずは、思いついたことを羅列してみることから始めます。具体的な内容が多い場合は、分類しまとめていくプロセスを大切にしたいです。全体像を俯瞰して見るために柱を組み立てることにも注力し、時間がかかっても頭の使い方に慣れるよう意識を高めていきたいと考えています。

クリティカルシンキング入門

営業プロセスの巧みな分解で成果倍増

どのようにプロセスを整理する? 営業成績を振り返る際に、プロセスをMECE(Mutually Exclusive, Collectively Exhaustive)に分解して整理するという視点が欠けていました。プロセスの分解自体は行っていたものの、その後の分析が不十分だったと感じています。今後は、この点を業務に活かしていきたいと思います。 問題解決に向けた分解思考 営業活動において、顧客を業界や職種で分解するだけでなく、自分の仕事のプロセスも細かく分解しました。その結果、どこに要因があり、何を解決すれば問題の特定につながるのかが明確になりました。このような分解という思考を、日々の活動に取り入れていきます。 課題特定のためのアプローチは? 具体的には、まず自分の営業プロセスを分解し、どこに課題があるか特定します。次に、顧客と受注の傾向も分解し、その中で自分の課題やポジティブな傾向を探っていきます。さらに、このアプローチを部下にも活用していこうと考えています。

データ・アナリティクス入門

比較が教える新たな発見

分析の視点は正しい? 分析を行う際、「分析は比較なり」という視点を常に意識することが大切だと感じました。まず、分析の目的を正確に把握し、提示先の求める結果と意識を合わせることの重要性を学びました。また、比較する目的に沿って適切な軸を設定する必要性も再認識しました。 意見交換はどう進む? また、さまざまな業界の方々のご意見を聞くことができ、グループワークでは意見交換が活発に行われ、非常に助かりました。 データの意味は十分? 私はIT業界で、顧客向けのデータ分析やBIツールの活用を行うことが多いため、依頼内容をただ見える化するのではなく、分析の目的をしっかり意識し、データの意味を考えた上で最適なグラフを選択する必要性を感じました。そのため、データの格納方法や保持方法を含めたトータルな提案力を高めたいと考えています。 業界課題はどう見る? さらに、さまざまな業界が抱える課題や、それぞれがどのようにデータ分析を実施しているのかについても非常に興味深く感じました。

マーケティング入門

自分も体験!新たな学びの扉

体験価値の必要性は? ある事例を通して、体験価値の向上がいかに重要かを実感しました。直近では商品の値上げが避けられない状況もありますが、値上げ後も購入してもらうためには体験価値の向上が不可欠です。これにより、他の商品との差別化が図られるとともに、環境配慮などの取り組みも情緒的な価値として受け入れられる可能性があると理解しました。 効率的アプローチ法は? 体験価値を高める方法について考える中で、顧客と直接会えるイベントは工数がかかる割にアプローチできる人数が限られていることに課題を感じています。しかし、今回の学習でその重要性を再認識し、より多くの人に効率的にアプローチする手法を模索する必要があると考えています。 企画立案の参考点は? また、自分の企画を立案する参考として、さまざまな企業が実施しているイベントやサブスクリプションサービスを実際に体験し、消費者視点からその魅力や改善点を考察することで、体験価値をどのように高められるかを探求していきたいと思いました。

データ・アナリティクス入門

仮説とデータで切り拓く未来

データ分析で何を学ぶ? 今週は、データ分析による業務課題の可視化や、仮説構築から分解・深掘り、施策立案に至る一連の流れを体系的に学びました。全体平均だけでは見えないグループごとの傾向把握の重要性や、セグメント別分析を通じてボトルネックやインサイトを抽出するプロセスが特に印象に残りました。具体的なケーススタディを通して、満足度や成果指標を分解することで課題の本質に迫るアプローチを体験できたことは非常に有意義でした。 営業分析をどう活かす? また、今回学んだ分析プロセスや分解思考は、自身の業務、特に営業活動にも応用可能だと感じました。たとえば、営業メンバーの訪問件数や提案内容、業界別の成約率、失注理由などのデータを収集・分解し、チームや個人、顧客属性ごとに傾向を分析することで、属人的な営業から再現性の高いプロセス型営業への転換が期待できます。さらに、成績上位者の営業プロセスを可視化してナレッジを共有することで、組織全体のレベルアップに貢献できると考えています。

データ・アナリティクス入門

A/Bテストで成果を見える化!

真因はどこにある? プロセスを分解し、問題がどこにあるのか、さらにその真因を掘り下げるアプローチは非常に重要です。このような手法により、具体的な対策が見えてきます。特に、A/Bテストを用いた評価方法は、複数の施策を公平に比較するために有効です。ランダム性を持たせつつ、できるだけ条件を同じにして施策をリリースし、実際の結果を基に評価することが求められます。 課題はどう捉える? 実際の業務では、A/Bテストを行う機会は少ないかもしれませんが、顧客の課題をプロセスに分解し、その真因を探りながら仮説を立てることは、多くの場面で有効です。このような手法で、顧客の表層的な課題だけでなく、プロセスの詳細まで深く掘り下げることが大切です。 データは信頼できる? そのためのヒアリングやディスカバーを繰り返すことで、有意義なデータを収集し、場合によっては実地での業務サーベイを行うことも検討します。これにより、定量的なメリットの根拠を構築することが可能になります。
AIコーチング導線バナー

「顧客 × 課題」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right