戦略思考入門

規模の経済性で印刷業務を改善する方法

規模の経済性とは何か? 実践演習を通じて、生産数量が増えることで1個当たりの固定費が減少すること、すなわち「規模の経済性」という用語を初めて知りました。しかし、単純に発注量を増やすだけでなく、需要のバランスや原材料の供給、品質、在庫管理の問題など、多様な要因を総合的に検討する必要があると実感しました。この考えは、私の業務である資材の印刷費にも応用できそうです。例えば、需要の確認や原材料費、印刷部数などについて、過去の経験に頼るのではなく、常に現状に合わせて見直す必要性を感じました。 戦略的思考をどう実践する? 総合演習では、業界の数値や状況をフレームワークで整理し言語化することで、自分が考えていた施策とは異なる施策の可能性を見出せることもありました。「戦略的思考」の3つの要点を達成するためには、適切なゴールを設定し、そこに至る道筋を明確化することが重要であり、それを他者に理解してもらうために言語化することを業務でも実践していきたいと思っています。 印刷費管理の課題とは? さらに、印刷費の管理では、大量印刷による倉庫管理費や廃棄コストについても見直しが必要です。紙の原価が上昇している現状において、常に需要を確認しながら印刷の必要性を再考することが求められます。これに対して、顧客ニーズや印刷利用数のデータを基に、毎回印刷部数とその必要性をメンバーと共に確認していく提案を進めていきたいです。 フレームワーク活用の重要性 また、総合演習から学んだ3C分析やPEST分析などのフレームワークは、実際に自分の業務で使ってみることによって初めて身につくと感じました。これらの手法を用いて、自分の考えを他者と共有し、適切なゴールや対応策を探求していきたいと思います。

戦略思考入門

ビジネスを制するメカニズムの極意

今週は何を学んだ? 今週の学びについて、以下のように感じました。 ビジネスはゲームか? まず、資本主義社会におけるビジネスは一種の「ゲーム」であり、そこで戦うためには「ルール」である「メカニズム」を学ぶことが重要です。どんな戦略も基本的な原理原則から外れていては意味がないため、このメカニズムを理解することが大切です。例えば、星野リゾートの星野社長が教科書通りの経営を重視されていることにその点が表れています。 変化に対応するには? 次に、時代やビジネス環境の変化によりメカニズムも変わるため、これに対応できる姿勢が求められます。「守」「破」「離」という取り組み姿勢やマインドセットが重要であり、自分で手を動かして試すこと、自ら調べ分析することも必要です。データや街を歩いて集めた情報を把握し、時代や環境変化を考慮し、指数関数的な急激な変化に対応することが競争の基盤となります。 基本をどう生かす? また、過去の知識を有効に活用することが重要です。業務に取り組む際、小難しい手法に飛びつくのではなく、まずは基本を大切にし、先人の知恵に基づいて基本を理解してから行動すべきです。 スピード重視の理由は? スピードを意識することも大切です。「スピードこそが競争のベースになる」と学びました。「スピード感」を持つことが業務改善に役立ちますが、その速度が何のために必要なのかという本質を見失わず、変化に対応しPDCAを回すために用いるべきです。 実践で何を得る? 最後に、自分で手を動かし経験を積むこと、規模の経済性と習熟効果の観点で業務を分析することが今回学んだ重要なポイントです。これらのメカニズムをしっかり理解し、戦略を立てることが求められると思います。

データ・アナリティクス入門

ABテストで効果を最大化する方法とは?

問題解決ステップの理解をどう深める? 問題解決の4つのステップについて学んだ中で、特にWhy(原因分析)とHow(解決方法の立案)、そしてその手法としてABテストについて理解が深まった。ABテストはシンプルで運用や判断がしやすく、低コスト・低工数・低リスクで実行可能なため、非常に活用しやすい。実施の際には、目的設定、改善ポイントの仮説設計(何でも変えるのではなく、意図を持って比較しやすくする)、実行(十分なデータ量を確保)、結果検証の流れが効果的である。ただし、Web広告の場合には時間帯や曜日、プラットフォームなど他の条件が異ならないように注意が必要だ。 ABテストで問題解決の精度を高めるには? さらに、ABテストは「データ分析を通じて問題解決の精度を高める(Check)」と「仮説を試しながらデータを収集し、よりよい問題解決につなげる(Act)」を迅速に行うことができるため、非常に効率的だ。 例えば、メルマガでイベント告知を行う際にABテストを活用すれば、それぞれ訴求する内容を変えて、どの訴求ポイントが効果的かを検証することができる。しかし、解決案をひとつに絞るのは良くないので、SNS投稿など別のアプローチも併用して検証する必要があるだろう。 問題解決の全体像を把握するには? これまで、ランディングページ(LP)作成や広告を打つ際、一度行ったABテストの結果に満足して長期間使用していたことを反省。常に仮説を持ち、様々な角度から検証して改善していくことが必要だと感じた。また、問題解決の4つのステップ(What→Where→Why→How)の順番を意識し、単に解決策を考えるだけでなく、その全体像を把握することにリソースを費やすことを心がけたい。

データ・アナリティクス入門

現状整理で未来を切り拓く

状況整理はどうする? 問題解決の基本アプローチとして、まず「What」の段階で直面している状況を整理することが大切です。現状と「あるべき姿」とのギャップを把握し、単に「出願数が少ない」といった表面的な指摘に留まらず、より深い原因を明確にする必要があります。その際、状況の詳細な把握により「Where」を特定し、分析対象を絞り込むことで、無駄な検討範囲を排除していきます。 原因究明はどうする? また、次のステップとして、WhyやHowといった視点から問題の原因やその解決策にアプローチします。事業成長に直結する知財戦略の立案では、現状認識が不十分な段階で安易な解決策に至ってしまわないよう、各ステップを徹底的に深堀りすることが求められます。そうすることで、問題の核心に迫り、より的確な対策を打ち出すことが可能になります。 ロジックはどう活かす? さらに、ロジックツリーの活用により、問題を階層的かつ体系的に分解する手法も重要です。複数の視点から課題を整理し、解決策を絞り込む際には、「もれなく、ダブり無く(MECE)」を意識しながらも、実践では過度にならないよう適度に活用することがポイントとなります。多様な切り口を持つことで、問題の傾向や根本原因が見えにくくなるリスクを回避し、よりバランスの取れた分析が可能となります。 出願戦略はどう進む? 例えば、出願のためのアイディア発掘や出願計画においても、上記の手法を取り入れることで、各ステップの整理が不足している現状を改善する狙いがあります。現状のプロジェクトでは、主に主観が判断に影響しているため、まずは問題の状況整理に取り組み、ロジックツリーを活用した細分化を進めることが効果的だと感じています。

デザイン思考入門

受講生のプロト挑戦と成長記

ユーザーの反応はどう? ユーザーからのフィードバックをもとに改良を重ねることが、成果向上の鍵だと実感しました。そこで、ユーザーの反応をスピーディーに得る手法を検討する必要性を感じています。具体的には、デザイン画や模型など、素早く形にできるプロトタイプの作り方が効果的です。フィードバックは、見た目、機能、使用感という3つの観点で捉えることができ、何を試したいのか、何を確かめたいのかを明確にして適切な手法を選ぶことが重要と感じました。 生成AIの可能性は? また、多くの受講生が生成AIを活用していることにも驚きました。ビジュアル化の面で、今後は私自身もこの技術を積極的に活用していきたいと思っています。 プロトタイプの意義は? 私自身の業務に当てはめると、扱う教材をどのように現場で使っていただくかを検討する役割があります。例えば、現場の指導提案を行う際、いきなり詳細な資料を持ち込むのではなく、まずはプロトタイプとして提案内容を形にし、意見を求めたり実際に使用してもらったりすることで、改善の余地を探ろうとしています。 プロトタイプの罠は? ただし、プロトタイプにこだわりすぎるとスピード感を失い、作成したものに固執してしまうリスクもあります。私自身は、商品開発の立場ではないからこそ、営業、マーケティング、開発といった異なる部門と連携し、情報を共有することが、よりよい企画へとつながると考えています。 十分な準備はどう? 今回の課題に取り組む中で、これまでの積み重ねがプロトタイプの精度を大きく左右することを痛感しました。自分なりに検討はしたものの、他の受講生に比べると十分な準備ができておらず、反省すべき結果となりました。

戦略思考入門

スキルを活かした業務改善の冒険

規模と範囲の違いは? 規模の経済性と範囲の経済性について学びました。規模の経済性は、現在の業務においても馴染み深いものであり、生産を拡大してコストを削減し、生産効率を向上させる手法です。一方で、範囲の経済性は複数の製品やサービスを同時に生産することでコストを低減する方法です。そのコストダウンのアプローチにはデメリットもあるため、目的に応じた選択が重要です。 演習で何を実感? また、最後の演習では、与えられた数値や資料を基に仮説を立て、その仮説の正しさを検証することから始めました。この過程で、粒を出すことまではできても、それを整理するためのフレームワークの活用がまだまだ不十分であると感じたため、分析能力の向上が必要だと痛感しました。 中長期戦略はどう? 今後の中長期的な視点としては、新規事業への挑戦時に学んだ内容を活用します。新たにBPO・BPR事業に参入する際には、3C分析、SWOT分析、PEST分析を活用し、目的に合わせた組織形成や業務設計を提案することを目指します。 課内改革は何から? 短期的には、課内の組織編制の検討に学んだフレームワークを活用します。現在の業務における課題を明確にし、その課題解決のために適切な組織形態を提案できるようにしていきます。 分析の始め方は? 分析においては、定量的なデータが多いほど効果的であるため、定性的なデータも可能な限り定量化していくところから開始します。また、定性的なデータにおいても進捗が確認できる指標を検討し、目的やKPIを設定します。この設定に当たっては、現状把握を正確に行い、そのための課題や解決策を設計するために学んだフレームワークを活用していきます。

マーケティング入門

直感とデータで挑む戦略の未来

自社の強みはどう活かす? ある企業の事例と富士フィルムの事例から、自社の既存の強みをいかにターゲットに届けるかというマーケティング手法の有効性を学びました。他社のサービスをどの程度意識し、意思決定に反映するかも重要なポイントです。機能比較のためにまるばつ表を作成し、改善点を洗い出す手法には一定の効果があると感じる一方、プロダクトの機能が他社と類似し、手数料による差別化が進むケースもあるため、実行のスピード感も求められていると実感しました。 どの軸で攻める? 経営層の直感的な意思決定によって各種プロダクトが立ち上がり、顧客層が中小企業向けから大企業向けに拡大する中で、今後どの軸で攻めるかを議論する段階にあると感じています。プロモーション手法に先立ち、まずは各プロダクトがどの伸び代に位置しているかを明確にし、戦略を立案することが最優先事項だと思います。経営陣へのインプットも含め、各種マーケティングフレームワークを用いて、伸び代の定義やデータ分析の結果を踏まえた戦略作りを進める必要があります。 戦略検証はどう進む? また、既存顧客の属性をデータで分析し、ユーザーインタビューなどを通じた現プロダクトの価値検証によるメンタルモデルの分析が欠かせません。海外サービスを視野に入れた競合分析やポジションマップの作成、事業戦略とのストーリーラインの接続、さらに市場規模(TAM、SAM、SOM)の試算など、各種分析を通して具体的な全体戦略を描くべきだと考えています。加えて、既知の要望の深掘りをプロダクトロードマップに反映するとともに、エンジニアとの密なコミュニケーションや開発リソース確保のための内部稟議も重要な要素となると感じました。

データ・アナリティクス入門

4つの視点が導く成功のカギ

講義で何を学んだ? 今回の講義では、課題の把握と改善プロセスについて学び、問題を「何が(What)」「どこで(Where)」「なぜ(Why)」「どのように(How)」の4つの視点から捉える重要性を再認識しました。特にA/Bテストを通じて、異なる施策を比較検証することで、効果的なマーケティング戦略を導き出す手法を理解できたことが印象的でした。また、仮説を立てた上でデータを収集し、検証と改善を繰り返す思考サイクルにより、日常に即したデータ分析力を鍛えることができたと実感しています。 チームでどう連携? また、チーム全体で納得感を持って課題に取り組むためには、課題解決のステップを着実に踏むことが不可欠であると感じました。例えば、アンケート結果から要望を読み取る際には、根拠となるデータを明確に示すことが効果的であるという点や、研修の理解度チェック問題で正答率が低かった場合には、単に理解不足と結論付けるのではなく、解答プロセスを丁寧に分解して検討する重要性についても触れています。各要因を切り分けて検討することで、真の原因を見出すことが可能となると理解しました。 多角検証の意味は? 「What」「Where」「Why」「How」のステップを意識することで、問題解決に向けた思考がより整理され、課題特定時の統一感を保つことが大切だと気づかされました。仮説立案においては、一面的な見方に偏らず、多角的なアプローチで検証する方法の有効性を実感し、検証段階では先入観にとらわれず、検証したい点以外の条件もしっかりと統一されているかを確認する重要性を学びました。これらの学びを今後の業務に活かし、より深く課題に向き合っていきたいと考えています。

クリティカルシンキング入門

データ分析で「全体像」を掴む技術

全体像はどう描く? データ分析において、状況を明確にするために分解が重要だと改めて感じました。まずは全体像を定義し、その上でデータを鵜呑みにせず可視化することが大切です。これまでの分析ではグラフを十分に活用してこなかったため、今後は積極的に取り入れたいと思います。比率計算を行うことは基本として、これまでの実践が正しかったと確認できた点は良かったです。 どの視点が大切? 分析する際、単に機械的に分けるのではなく、BtoBビジネスでの分析環境を踏まえて、年齢層や学生かどうかといった視点を考慮することが重要です。特徴的な傾向が見えない場合でも、それ自体に価値があることを意識し、様々な切り口から分析を試みることが大切です。こうしたアプローチを通じて、データ分析の精度を上げていきたいと思っています。 仮説の真実は? 私は頻繁にデータ分析を行う立場にいますので、全体を改めて定義し、グラフを駆使しながら多角的にデータを分解してみることに挑戦したいと考えています。また、特定の仮説が正しいか検証するためにも、多様な切り口での分析を継続して行いたいです。現在の業務改善プロジェクトで実践している「プロセス分解」にも、さらに効率的に活用できる方法を追求していきます。 過去と今を比べる? そこで、過去のプロジェクトレビューを計画しています。以前取り組んだ案件のデータを利用し、当時と最近の学びを基にした分析を比較し、効率や分解の質を評価したいと考えています。結論が変わることはないと思いますが、分析時間や分解の質など他に計測できる点を比較し、効率化の可能性を探りたいと思います。適用可能なプロセス分解手法は、今後も活用していくつもりです。

データ・アナリティクス入門

仮説で切り拓く未来の発見

仮説の意義は何? ビジネスにおける仮説とは、ある論点に対する仮の答えを意味します。重要なのは、正しい答えに決め打ちせず、複数の仮説を挙げることで網羅性を確保することです。仮説には「結論の仮説」と「問題解決の仮説」があり、時間軸によって過去の検証と未来の予測で内容が変わります。 仮説をどう検証する? 問題解決の仮説は、問題解決のプロセスに沿って、WHATからWHERE、WHY、HOWへと各要素に仮説を立てるものです。このアプローチにより、検証マインドが向上し、問題意識や改善点への気づきが促進されるという利点があります。 仮説は広く捉える? ゲイルを通して学んだのは、正しい答えに近づけようと意識するあまり、仮説の範囲が狭くなってしまう可能性があるという点です。思いつくままに仮説を列挙してみることで、仮説の網羅性や全体像が明らかになることを実感しました。また、数値を用いた費用対効果の分析手法も学ぶことができ、有用な気づきとなりました。 売上の原因を探る? 具体的な例として、売上分析においては、単価が低いことやコストが上回っていること、あるいは季節性の変動によって患者数が左右されるなど、さまざまな仮説が考えられます。これらの仮説は、結論の仮説として売上未達の要因を示すものと、問題解決のプロセスとして原因究明のための仮説として整理することが求められます。 仮説報告はどう? 毎週の売上数値進捗報告では、複数の仮説を設定し、その検証結果と合わせて報告することで、仮説立案のプロセスに説得力を持たせることが大切だと感じました。月末には、立てた仮説を通して得た気づきを言語化し、次のステップに活かす姿勢が必要です。

デザイン思考入門

定性分析で見える現場の真実

定性分析はどう整理? 現在、自社の業務改善のための分析を進める中で、これまで漠然としていた内容が「定性分析」であったことに気づき、大きな発見となりました。業務のやり方は数値で把握しにくいため、現場での観察やインタビューを通じて状況を捉え、得られた情報から実態を明らかにする必要があると感じました。また、コーディングにより一次コード、二次コードと分類し、フレームワークやプロセスに落とし込む方法を実践することで、今後も学びを深めていこうという意欲が湧きました。 顧客課題をどう捉える? 顧客課題仮説の導出は非常に難しいと実感しました。定性分析でコーディングを進める際、観察やインタビューから得られる情報が十分かどうか不安になるとともに、ペルソナやカスタマージャーニーマップの捉え方によって仮説の内容が変わる点も大きな気付きでした。今回の講義で学んだのは、顧客課題仮説を広く捉えるのではなく、焦点を絞り「ユーザー」「状況」「課題」「ソリューション」という具体的な文書化を行う手法であり、その手法は非常に有効だと感じました。 問題本質をどう捉える? さらに、「問題の本質を捉える」から始まり、洞察の整理と可視化、顧客課題仮説の作成、ユーザー中心の視点の維持、そして検証と改善という流れを作ることの重要性を学びました。定性分析では、プロセスやフレームワークの構築により、定量分析で検証すべき仮説が明確になるという点も理解できました。実際の現場での観察からは、ユーザー自身が気づいていない暗黙知に触れることができる有効な手法であることを実感しました。今後はこれらの経験を活かし、顧客に対する課題分析をさらに実践していきたいと思います。

クリティカルシンキング入門

業務に役立つクリティカルシンキングの実践

目標に近づくには? 全体の振り返りを行ったことで、改めてWeek1の時点で描いていたゴールに近づくために、具体的にどう行動すればよいかを考えることができました。 悩みをどう解決する? 当初、私はお客様の行動分析をするうえで、課題に対する仮説の立て方や、正しい判断をするための具体的な方法が分からないという悩みがありました。しかし、クリティカルシンキングで学んだ自問自答や分解の手法を反復実践していくことで、今後はこの悩みを解決につなげられると思いました。 学びをどう活用する? 次のような業務に学びを活用したいと思います。 - 個人目標設定 - 企画や改善業務の推進(特にゴールを具体化する際) - お客様アンケートなどの行動分析 - 資料・コンテンツ作成 - 他部門や他社への協力要請(コミュニケーション面) 具体的な実行プランは? 自身の業務では、来期の個人の目標設定をする時期にあるため、以下の点を実践し、成果を上げられるように取り組みたいと思います。 - 課題解決の目的を自問自答しながら考える - 事実をもれなくダブりなく分解し、客観的に判断する - 抽象的な情報を具体化し、ポイントを絞って課題解決する - 相手の常識を覆すような情報の伝え方をする - 目的がぶれないように共有し、一貫して押さえ続ける 分析に効果的な方法とは? お客様アンケートなどの結果を分析する際には、イシューを考え、分解する手法を実践したいと思います。実際にやってみると、とても時間がかかることが分かりましたが、客観性を担保することで、効果的な課題解決につながることを知りましたので、今後も業務で継続していきたいと思います。

「改善 × 手法」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right