クリティカルシンキング入門

正しい問いで切り拓く明日

本質的な問いは? 「イシューの特定」、すなわち「今、何を考えるべきか?」を問うことが、クリティカルシンキングにおいて最も重要であると学びました。問いの立て方が誤っていれば、これまで習得してきたデータの分解や視覚化などの手法も効果を発揮しません。そのため、常に正確な問いを立て、本質的な課題を見失わないよう意識することが大切だと感じています。 背景をどう見る? 管理職として日々様々な課題に直面する中で、表面的な事象だけを捉えて短絡的な対策を講じるのではなく、その背景や状況をしっかりと把握し、正しい問いを立てることを心掛けています。また、メンバーからの質問や相談に対して、イシューが正しく特定されていないと感じた場合は、しっかりと話を聞きながら、彼ら自身が本質的な問いを見出せるようサポートすることを意識しています。 計画に必要なものは? 来年度の事業計画作成にあたっては、まず今年度の振り返りで、良かった点と改善が必要な点を背景やデータの視点から深く掘り下げること、その上で「数値目標(売上や利益)を達成するために何が必要か?」という問いを軸に、今年度の学びを活かしながら来年度の取り組みを策定していきたいと考えています。また、事業計画をメンバーに共有する際には、表面的な数字だけでなく、計画の背景にある課題やそれに基づく理由を十分に伝わるよう工夫して説明していくつもりです。

クリティカルシンキング入門

ナノ単科で人事業務の分析力が大幅アップ!

5W1Hで分析する意義とは? MECEを意識して、5W1Hの視点でモレなくダブりない区分で分析することを実践してみました。その結果、違いがない区分を見つけることの重要性を実感しました。逆に、違いがあると分かった区分については、どの単位で区分することが最も効果的な分析となるかを検証しました。 人事業務への具体的な応用例 担当する人事業務について、以下の場面で活用してみたいと考えています。 採用戦略の見直し方は? 採用については、自社に合う応募者の層を拡大し、志望度を向上させる施策を検討します。具体的には、志望度が高く選考に臨む層の分析を行い、現在効果的に志望度を高められていない層へのアプローチも検討します。それらの分析結果に基づいて、採用イベントや選考プロセスの改善にも取り組みます。 効果的な研修とは何か? 研修については、業務に実効性のある研修の特定と拡充を目指します。具体的には、どの種類の研修が効果的で実務に活用できているか分析し、効果的な手法を拡大する一方で、効果が薄い手法の改善も検討します。 エンゲージメント向上施策を探る エンゲージメントについては、エンゲージメント高く仕事に取り組んでいる層を判別し、逆に低い層の傾向を把握します。具体的には、高いエンゲージメントを持つ層の共通点を事例として紹介し、低い層の改善施策を検討していきます。

リーダーシップ・キャリアビジョン入門

共感から始まる信頼の面談術

面談の留意点は? ロールプレイを通じて、面談時の留意点を理解することができました。具体的な事実に基づいて伝えること、メンバーの苦労に共感を示すこと、自身や環境の不足を認めること、良かった点と改善が必要な点を具体的に伝えること、そしてメンバー自身に振り返りを促す聞き方をすることが大切であると実感しました。 コミュニケーション大切? 実際に面談を行う立場ではないものの、これらの学びは新しく来た上司への対応に活かせると考えています。普段から十分なコミュニケーションが取れていなければ、面談時に相手の成長に繋がる具体的な改善点を伝えることが難しいため、日々丁寧なコミュニケーションを心がける必要性を感じました。また、エンパワメントに適した仕事かどうかを見極めながら、適切に任せて伴走できる体制も大切です。 信頼関係はどう築く? 新しく来た上司には、まず毎日丁寧なコミュニケーションを取ることで信頼関係を築いていきたいです。年度目標の設定については、一緒に考え、具体的な目標や手法について丁寧に話し合うことを意識します。さらに、日頃から共感を示し、モチベーションに繋がる伝え方をすることで、目標達成に向けた伴走を意識した支援を心がけます。エンパワメントに向けた業務においては、目的や手法を明示し、ゴールを明確に伝えるとともに、積極的に任せる姿勢で取り組んでいきたいと考えています。

クリティカルシンキング入門

ピラミッドが導く説得の秘訣

相手に伝わる方法は? 他人に自分の主張を伝え、行動を促すために必要なスキルを学びました。特に、ビジネスの現場では、相手の立場に立ってわかりやすく伝えることが何よりも重要であると実感しました。その第一歩として、主語や述語を意識したアウトプットの基本を学びました。 論理の重ね方は? また、自分の主張を裏付ける論理を構造化する手法にも注目しました。すぐに結論に飛びつくのではなく、複数の切り口から論理を重ねることで、説得力や理解しやすさが向上することを体験しました。 仮説の組み立ては? さらに、不確実性の高い新規事業の推進においては、仮説を立てる際にピラミッドストラクチャーを意識することが有効だと感じました。まず答えのない課題を明確に特定し、数字を用いた分析や整理を行いながら論理を組み立てていくことの重要性を再認識しました。こうしたプロセスにおける、論理の柱をしっかり考える手間が、後の認識のずれや意思決定の遅延を防ぐ鍵であると考えています。 報告会の改善は? これからは、毎週の事業報告会で使用するフォーマットをピラミッドストラクチャー型に変更し、主張の根拠となる論理を明確に伝える工夫を続けていきます。また、部下が発信する意見に対しても、構造化されたアウトプットを意識したコミュニケーションを心がけ、より正確で効果的な情報伝達を目指していきたいと思います。

データ・アナリティクス入門

比べる力が未来を変える

ライブ授業で感じた点は? 締めのライブ授業では、これまでの学びを振り返る機会がありました。データ分析の手法として、比較を活用する方法を学び、目的設定から仮説構築、データや情報の収集、分析、さらには仮説の検証という一連のプロセスの重要性を実感できました。また、自分の考えにとらわれず、さまざまな視点から検証することの大切さも理解でき、これらの手法をいかに実践し、スキルとして身につけるかが今後の課題であると感じています。 部門業績の課題は? 部門業績分析においては、自部門の営業データを活用し、強みと弱みの再確認を進めています。さらに、セグメント別の成長性や低成長部門の課題を明確にし、改善策の検討や戦略の見直しにつなげたいと考えています。次年度の目標設定にあたっては、今年の実績を論理的に分析し、定量的・定性的な評価が可能な具体的な目標を立てる予定です。すでに各メンバーには来期に向けて自ら考えた目標設定を進めてもらっており、私自身も部門全体の強みや弱み、注力すべきセグメントを整理した上で、各メンバーの目標と比較・検証を行っています。このプロセスを通じて、部門全体で論理的な目標理解を深め、同じ方向性で次年度の業務に取り組むことを目指しています。目標設定は3月中に取りまとめ、次年度からは月次で目標達成度の比較分析を実施し、達成に向けた具体策を全員で共有していく方針です。

データ・アナリティクス入門

ファネル分析で顧客行動を最適化する方法

ファネル分析の重要性とは? マーケティング分野での業務経験があるため、比較的知っていることが多かったですが、ファネル分析において顧客の行動プロセスを適切に設定する必要性を改めて認識しました。また、プロセス×ウォーターフォールチャートはあまり使っていなかったので、今後活用してみたいと思います。 ABテストの基本と注意点は? 以下、授業メモです。 ◆ABテスト - ABテストは1要素ずつ行います。複数の要素をテストしたい場合は、別の手法を検討する必要があります。 ◆ファネル分析 - ユーザーの利用段階ごとに、どの段階でユーザーが離脱しているのかを可視化します。 - プロセス×ウオーターフォールチャートを適切に活用します。 - 顧客の行動プロセスを適切に設定することが重要です。 GA4での課題解決にどう取り組む? GA4でのファネル分析を新たに作成する際には、顧客の行動プロセスを意識します。また、プロセス×ウオーターフォールチャートを適切に活用し、ABテストもページスピードが低下するリスクを考慮しつつ活用を検討します。 ちょうど製品サイトのリニューアルを進めており、GA4の設定も見直す予定です。顧客の行動プロセスを意識したファネル分析を行い、原因探索が適切に行えるようにします。また、見出した原因に基づく改善にはABテストを活用します。

クリティカルシンキング入門

適切な問いが導くデータ活用術

適切な問いはなぜ? 今週の学びを通じて、問題解決における「適切な問いの設定」の重要性を改めて認識しました。明確に定義された「解決すべき課題」が、効果的な分析と解決策の導出につながることを学びました。また、データの適切な加工と分析によって情報を構造化し、視覚的に明確な形で提示する手法の有用性を実感しました。さらに、データの図表化が分析の精度向上に寄与することを体感し、実務での具体的な活用方法を見出すことができました。 現職での実践は? 「問いを立てる力」と「データの分析手法」を現職の業務改善プロジェクトで実践していきます。業務フローの課題特定に際しては、チームメンバーと「本質的な課題」を共有し、分析を深めるプロセスを確立しようと考えています。また、提案資料作成においてはデータの視覚化を通じて説得力を高め、経営層の的確な意思決定をサポートしたいと思います。 解決力高める秘訣は? 課題解決力を高めるため、以下の取り組みを実践します。毎週の振り返りで課題を整理し、本質的な問いを設定し、分析結果を図表化してチームで共有し、活発な意見交換を行います。わかりやすく論理的な資料作成を心がけ、改善を重ねます。また、学んだ内容を繰り返し実践し、定期的な振り返りで成長を目指します。これらの取り組みを通じて、実務での課題解決力を高めていきたいと考えています。

データ・アナリティクス入門

数値と論理で見える理想の未来

どの方法で解決? 問題解決には大きく2つのアプローチがあると感じています。1つは、あるべき姿と現状のギャップを埋め、正しい状況に戻すための方法です。もう1つは、未来に向けたありたい姿と現状のギャップを解消し、望む状態に到達するための方法です。どちらの場合も、目指す状態と現状を定量的に示すことが非常に重要です。 分析手法は何? そのため、ロジックツリーやMECEといった分析手法が有効だと考えています。これらのツールを使うことで、問題やデータを細かく分解し、整理された形で把握することが可能になります。 顧客データ整理はどう進む? 具体的には、現在保有している顧客データに含まれる情報を、国や契約の条件などの観点から整理する必要があります。これまで「顧客データ」とひとまとめにされていた部分を、ロジックツリーを用いて項目ごとに分解し、各顧客についてどのような情報が含まれているのかを明確にすることが求められます。また、業務における理想の状態と現状のギャップについても、数値などの定量的な指標を用いて示すことが大切だと感じました。 手法活用の可能性は? このように、定量的な情報の整理と、体系的な分析手法の活用が、問題解決を実現する上で不可欠であると再認識しました。今後も、これらの手法を業務の改善に積極的に取り入れていきたいと思います。

データ・アナリティクス入門

小さな実験、大きな変革

A/Bテストの意義は? 今週は、A/Bテストの重要性とその実施ポイントについて学びました。効果検証においては、目的と仮説が非常に大切であり、1要素ずつ同条件で比較することで、検証の精度が上がると実感しました。この考え方は、今後の業務改善にも大いに役立つと思います。 現場での工夫は? 学んだ内容は、現場での作業効率向上や安全対策の見直しに応用できると感じました。たとえば、同じ作業を複数の方法で実施し、作業時間や事故発生の状況を比較することで、どの方法がより効果的か客観的に判断できます。また、新しい手順やツールを導入する際には、いきなり全体に適用するのではなく、まず小規模でテストし、得られたデータをもとに判断することで、リスクを抑えた改善が可能となります。こうした手法は、現場改善の精度を高め、納得感を持たせるためにも有用です。 改善策はどのように? まずは、改善したい作業手順を一つ選び、従来の方法と新たに提案する方法の両方を明確に定義します。その上で、両手法を同条件・同期間で実施できるよう現場を調整し、作業時間や安全面、作業者の負担などのデータを記録・比較します。実施前には「どちらの方法がより効率的か」という仮説を立て、検証の目的を関係者と十分に共有してからテストを行い、効果が確認された場合は現場全体への展開を検討する方針です。

クリティカルシンキング入門

伝わる工夫で魅せる資料術

資料の視覚化は? 伝えたい内容は、単なる言葉だけでなく、視覚的に表現することでより効果的に伝わることを実感しました。テキストや色の使い方、資料上での順序、グラフの種類、そしてメッセージとグラフとの関連性など、工夫する要素が多々あります。これらは、単に思いつきで作成するのではなく、受け手を意識して選び抜く必要があると感じました。さらに、資料を作る際は、どの場面で誰に見せるのか、作成の目的を明確にすることが大切です。 部内外の説明は? 自分が所属する部署では、部内外に業務プロセスの改善や新規プロジェクトの導入を説明するとき、過去のデータと現状の推移を図示するなどして、なぜその取り組みが必要なのかを明確に伝えています。こうした手法は、今回学んだ内容を活かすのに非常に役立っています。また、部下の資料チェックを行う際も、相手に伝わりやすい工夫がされているか、ポイントが正確に押さえられているかを意識するように心がけています。 今後の資料作りは? 今後は、資料作成や確認の際、今回の学びがしっかりと反映され、受け手に必要な情報が探さずとも見つかるような工夫がなされているかを常にチェックする習慣を続けたいと思います。また、表やグラフの種類ごとにその効果を最大限に発揮する使い方をさらに学び、より具体的で理解しやすい資料作りに挑戦していきます。

クリティカルシンキング入門

データの切り口に迷ったら実践する方法

データ分析の切り口選びで何が見える? データの分け方によっては、見えてくる結果が異なることがあります。例えば、分解する切り口を誤ると、真の原因が発見できなくなることがあります。このとき、分解する切り口は「層別分解」「変数分解」「プロセス分解」の3つが有用です。これらの手法に慣れることが重要なので、自分で考えながら手を動かすことが大切です。 真の原因を探る鍵はどこに? 問題解決において真の原因を探る際には、データ分析を行いますが、その際には分解の切り口が誤っていないかどうかを確認する必要があります。また、お客様へのヒアリングの中でMECEおよび5W1Hを意識することで、真の原因や現状を把握する際に役立ちます。 問題解決にMECEはどう活用する? 問題の特定と分析において、問題を構成する要素を重複なく漏れなく分解することで全体像を把握しやすくなり、また問題の原因を特定する際に全ての可能性を考慮して整理することができます。業務プロセスの改善では、業務フローをMECEに分解することで効率化の余地を明確にします。データ分析とレポーティングでも、データをMECEに整理することで分析の精度を高め、クライアントにわかりやすく伝えることができます。加えて、プロジェクト管理ではプロジェクトのタスクをMECEに分解し、抜け漏れなく管理します。

データ・アナリティクス入門

実践で磨く、A/Bテストの秘訣

情報伝達の大切さは? 今回の学びを通して、情報が漏れなく重複なく伝わることの大切さを改めて認識しました。目的を見失わず、必要なポイントを抑えることの重要性が意識されました。 A/Bテストの効果は? 特に、A/Bテストの活用は検証のしやすさや結果の共有において分かりやすい手法であると感じました。一定の制限をかけ、絞り込むことで方向性を見失わずに進める工夫にも気づきました。 広告運用のコツは? 実務でgoogle広告を活用する中で、A/Bテストの形式で構成され、AIが複数のセンテンスを組み合わせることで広告の最適化を図る仕組みを再認識しました。小さな変更を繰り返すアプローチは、実際にすぐ活用できる効果的な方法だと実感しています。 プロモーションはどう? また、運用しているプロモーションに関しては、早速実践に移し、チーム内で共有して理解を深めることが重要だと感じました。取得したデータをもとに分析し、意見を擦り合わせることで、より精度の高い施策へと進化させていく予定です。 チームでの改善は? 今後は、A/Bテストの手法をさらに高度なものにグレードアップすることも視野に入れています。ただし、個々のスキルに偏ることなく、チーム全体でアウトプットの場を設け、ディスカッションを重ねるよう取り組んでいきたいと考えています。

「改善 × 手法」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right