デザイン思考入門

多角的視点で切り拓く未来

ブレインストーミングのコツは? これまで店舗オペレーションの課題解決に取り組む際、ブレインストーミングやカスタマージャーニーを用いていましたが、今回学んだポイントやSCAMPER法を取り入れてみたいと考えています。まずブレインストーミングでは「質より量」を意識し、リラックスできる環境で自由にアイディアを出すことを大切にしました。アイディアをグループ化することで関連性を明確にし、次のアクションに繋げられる点が印象的でした。自分だけでなく、他部署のメンバーも巻き込むことでより多角的な視点で解決策を導き出すことができると感じています。 シナリオはどう捉える? また、シナリオ法ではユーザーの行動をストーリー化し、各シーンでの感情や潜在的なニーズを掘り下げることが重要と理解しました。テキストだけでなく、絵や図を使って視覚化することで、ユーザーの思考や感情をより具体的に捉えられるため、他の視点からの意見も取り入れやすくなると実感しています。 SCAMPER法の利点は? さらに、SCAMPER法はSubstitute(代用)、Combine(組み合わせ)、Adapt(応用)、Modify(修正)、Put to other uses(転用)、Eliminate(削ぎ落とす)、Reverse/Rearrange(再構成)の7つの視点からアイディアを検討するフレームワークです。実際に店舗オペレーションの改善において、コストやスペースの制約から新たな解決策を模索する上で、これらの視点が非常に参考になりました。今週「バックパックを軽くする」という課題に取り組んだ際は、なかなかアイディアが出なかったものの、日頃からさまざまなシチュエーションでこの視点を意識することの重要性を再認識しました。 発想力を高める秘訣は? 発想フェーズにおいては、質よりも量を意識して多様な視点からアイディアを出すことがカギであると感じます。視覚的な刺激や多様なチームでの取り組みによって、新たな発見やアイディアの具体化が促されるため、今後もブレインストーミング、シナリオ法、KJ法、ペーパープロトタイピング、SCAMPER法など、さまざまな手法を積極的に取り入れていきたいと思います。

リーダーシップ・キャリアビジョン入門

社用車管理のエンパワメント成功術

エンパワメントとは何か? エンパワメントとは、メンバーが自律的に業務を遂行できるように促すリーダーシップの一つです。目標を設定して、その達成方法をメンバーの自主性に任せつつ、効果的な支援を行います。ただし、ミスが許されない仕事や納期が極端に短い仕事には向かない手法です。リーダーがメンバーをよく理解し、モチベーションやスキル、喜びを感じる要因を見極めることも重要です。人材育成という側面も忘れずに考慮する必要があります。 目標設定はなぜ重要? リーダーシップの実践における第2ステップは目標設定です。目標設定では、メンバーをそのプロセスに参加させることが重要で、問いかけを通じてメンバーの問題意識や関心を引き出し、発言を促すことでコミットメントを得ます。また、目標は具体的で定量的であるべきです。メンバーが優先順位をつけて行動しやすいような、測定可能な目標が望ましいです。その際、目標に意義を持たせることで、メンバーの使命感を引き出し、挑戦感を与えることも大切です。これはメンバーに少し高めの目標を与えることで実現します。 成果が出ない時の対処法は? しかし、目標設定をしてもメンバーがやる気を出さない場合は、それが理解不足なのか、実行不能なのか、意欲の欠如なのかを見極めて、適切な支援を行う必要があります。 総務業務に目標設定をどう活用する? 私の業務に関して言えば、総務業務における目標設定を活用できると感じています。今回は、社用車管理業務に注目します。総務の業務は組織方針において抽象的になることが多く、(例:従業員が働きやすい職場環境の改善)そのため、メンバーが業務を日常の一環と捉えてしまい、課題の改善に取り組む意欲を持ちにくいと感じています。 具体的に、25年度の社用車管理業務の目標設定を実施しようと考えています。関係するメンバーを集め、問題意識や関心点をブレインストーミングで出し合い、それを整理します。小さな問題やすぐ解決できる事案は日常業務として処理し、大きな解決策が必要なものや即座に解決策が出ないものを課題として取り上げ、目標設定を行います。目的の意義、定量的かつ具体的な内容、そして挑戦の要素を各メンバーに伝え、エンパワメントを活用します。

クリティカルシンキング入門

データを分解して得る新たな視点

データ分解で得られる新視点とは? データを分解することで事象の解像度が上がることを学びました。データを単なる数字として見るのではなく、一手間加えることで新たな視点が得られます。例えば、データをグラフ化したり、割合を計算してみたりすることで、より深く理解できることが多いです。 データをどう分けるべきか? データを分ける際には、定性的な仮説を持ち、複数の切り口から分解することが重要です。その際、MECE(もれなくダブりなく)の原則を活用すると効果的です。MECEを用いると、全体集合を部分に分ける(足し算)、事象を変数で分ける(かけ算/わり算)、あるいはプロセスで分けるという切り口が考えられます。 MECEの原則を実践するには? 私はこの概念を知ってはいましたが、実際に分解をする際にうまくできていないと感じていました。切り口についても感覚に頼っていましたが、言語化された切り口を示されたことで、今後はそれを指針にできるようになったと感じています。 営業成果への応用とは? 営業部門の成果の低迷や、良好な場合の要因を探るために、この手法が活用できると思います。プロセスで分解している部分はありますが、クライアントを特徴別に分けたり(足し算)、売上や利益率から分解する(かけ算/わり算)部分が不足していることに気づきました。これを行うことで、良い成果を上げた要因を特定し、勝ちパターンを見出すことができ、悪い時は修正ポイントを明確にして改善行動に役立てることができると思います。 人事課題の解析はどう役立つ? また、人事課題の検討においても、従業員をMECEで分解し、課題点を探ることで、解決策を考えるのに役立てることができると感じています。 実践のための初めの一歩は? 学んだことを実践に移すため、データの切り分けを実際に行う機会を持ちたいと考えています。現在、すぐに取り組むべき課題もいくつかありますが、データを全体的に捉えられていないものが多いです。まずはデータを集めることから始めなければなりません。そのために、どのようなデータが必要なのかを5W1Hを使って考え、それをMECEを用いて分解しようと考えています。

データ・アナリティクス入門

原因探索で拓く学びの未来

なぜプロセスを分解する? WEEK05「原因を探索する」では、まず一連のプロセスを分解して、各段階の転換(例:表示からクリック、クリックから体験レッスンへの導線)について整理する手法が紹介されていました。次に、問題の原因を探るために、企業戦略だけでなくそれ以外の要因も視野に入れる「対概念」の考え方が示され、幅広い視点での分析が求められていることが分かりました。 どうして要因に注目する? また、原因探索の際には、コストやスピード、意思疎通といった項目を重要度に基づいて重み付けし、最もインパクトのある要因に注力することが提案されています。さらに、少ない工数でかつリスクを抑えて改善を実施できるA/Bテストによるランダム化比較実験の実施方法も取り上げられ、実践的なアプローチとして評価されていました。加えて、ファネル分析により、ユーザーの行動プロセスを段階ごとに可視化し、どこでユーザーが離脱しているのかを実数と比率の両面から明らかにする手法も理解できました。 この事例はどう見る? 一方で、筆者自身が携わる自動車部品メーカーの事例では、採用ファネル管理表の作成が依頼されながらも、実際の元データが分散・乱雑な状態にある現状が語られていました。採用プロセスの各段階(応募者数、書類選考、面接、内定)の実数と割合を把握し、Excelやグラフ化ツールを使って直感的に状況を捉え、進捗管理やボトルネックの特定、採用プロセス全体の効率化と品質向上を目指すという目的が明確にされています。 なぜデータ整備が必要? そのため、まずは不要なデータの削除、重複データの統合、欠損データの処理、書式や値の統一など、元データの整備に着手する必要があります。加えて、着手前には「なぜ採用ファネル管理表が必要か」を改めて検討し、採用業務全体に問題がないか、他の角度から問題が発生していないかを確認する重要性が強調されていました。 分析の重要性は何? 今回の学びを通して、分析の基本プロセスである「what, where, why, how」を行き来しながら、各ステップにしっかり向き合うことの重要性を改めて認識することができました。

クリティカルシンキング入門

問いを立てる力で見抜く本質

クリティカルシンキングの核心とは? クリティカルシンキングで最も重要なのは「問い」に関する部分です。まず、目の前の出来事が「問い」なのかに気づくこと、認識することを大切にしたいです。 正しいイシューの特定方法 起こった事象に対して「問い」を立てるのか、それとも事象が起こる前の部分に「問い」を向けるのかによって、アウトプットは大きく変わります。これまで学んできた「考えること」「分解すること」が重要で、本質を見抜くことが求められます。 基本戦略やセオリー、本来正しいはずの理論や手法も、特定した「イシュー」が間違っていれば、悪手になることがあります。「イシュー」は常に変化するため、定点観測や分析を通じて追い続けることが必要です。局面ごとに最適な「イシュー」を導き出すことが求められます。 問いの共有が鍵となる 「イシュー」を特定するためには、「問い」から始め、問いを残し、問いを共有することが重要です。まず疑問文の形にすること、具体的に考え、過度に壮大にしないこと、一貫して「イシュー」を抑え続けることが求められます。 自身に対して「問い」を立てる際は、的外れな方向に進まないようにし、立ち止まることや「問いを残すこと」を意識したいです。 具体例を視覚化する効果とは? また、基本的な「き」に立ち返り、分解を行うことが大切です。具体例を視覚化したり、多角的に見るためには図などを用いることが有効です。 イシューを見極める場面とは? 「イシュー」を特定する場面としては、業務改善や組織・チームの改善、営業戦略の立案時、さらには自身のタイムマネジメント不足に対処する際があります。目の前の課題に気づき、問いを起こすことができるかどうか、常に気付きのレベルを高く保つ必要があります。そのためには学習や自己啓発を続け、引き出しを増やし続けることが重要です。具体的な行動や取り組み姿勢として、自らをそうした環境に置き続けることが必要です。 最後に、「イシュー」を特定する際に「問い」を持ち続けるために、自分にとって視覚化が重要だと感じました。ソフトウェアの活用などを通じてこれを実践していきたいと思います。

データ・アナリティクス入門

ロジカルなアプローチで課題を解決する秘訣

分解手法の課題とは? ロジックツリーについては知識があったが、「層別分解」や「変数分解」については理解が浅かった。このため、分解の方法に甘さがあったことに気づいた。MECE(漏れなくダブりなく)の原則に基づいて物事を分解しようとしていたが、ただ「その他」という項目を入れないようにしよう、「漏れなくダブりなくしよう」とするに留まり、実際には分析の観点で意味のある分解ができていなかった。「切り分けて意味のある分け方」ができていなかったのだ。 SFAでの運用改善策とは? マーケティングにおけるリードから商談に至るまでの顧客属性や営業活動履歴について分解し、SFA(営業支援ツール)上で選択肢を設定している。しかし、これがMECEであったとしても、分析の観点で後々良い結果に繋がらない選択肢を設定してしまっていたと気づかされた。ルールとして運用に乗せているため現場には混乱が生じがちだが、説明を通して理解を得て改善していきたい。 問題解決に向けたステップ SFAでの選択肢に関して直近の課題については、以下のステップをとる予定だ。 1. 最適なSFAでの活動結果の選択肢を調整するため、これまでに蓄積された様々な結果を分解手法を用いて再分解する。 2. 修正点についてチームメンバーと意見交換を重ね、最終的な決定を行う。 3. 現場の運用に支障が出ないよう、営業メンバーに理由を含めて通達し、理解を得る。 冷静な問題解決が大切 また、今後自分が行う企画については、「問題解決のために必要なステップ」である「what(何が問題か)」「where(どこに問題があるか)」「why(なぜ問題が起きているか)」「how(どうすればよいのか)」をきちんと踏まえ、目の前に見えて重要そうな課題や感情論に走らず、冷静かつ客観的に根拠のある分析を進めていきたい。企画時点での分析をきちんと行い、その結果をまた分析することでPDCAサイクルを回すことを徹底したい。 説得力を高めるには? 他メンバーに対して意見を出す際にも、上記の問題解決のステップを踏まえた説得力のある意見を出せるよう努め、納得を得られる形にしたい。

データ・アナリティクス入門

仮説で拓く!多角的学びの道

分解で何が見える? 今週の学習でまず印象に残ったのは、問題の原因を明らかにするためにプロセスを分解する考え方です。以前学んだロジックツリーと同様のアプローチで、複雑な問題も整理しやすくなる点が非常に参考になりました。 A/Bテストの本質は? また、初めてA/Bテストについて学びました。Webサイトやアプリの改善において、2つのパターンを比較してどちらが効果的か検証するこの手法は、データに基づいた改善策を決定する上で非常に有用だと感じました。 対概念で広がる視野は? さらに、対概念という考え方も学びました。対象となる事象の反対の観点を同時に考えることで、物事を多角的に捉え、より本質的な理解につながるという点が印象的でした。 患者動向をどう分析? 診療科別の患者受診動向データ分析に関する学習内容も非常に有益でした。分析の視点に差異が生じた場合に、仮説に基づいて問題解決のプロセスをWhat(問題の明確化)→Where(問題箇所の特定)→Why(原因の分析)→How(解決策の立案)のステップで進めることで、より精度の高い分析が可能になると理解しました。これまではいきなり解決策を検討することが多かったため、本質に迫った対策を導き出す点で大きな学びとなりました。 仮説と実試行は? また、現時点ではA/Bテストの具体的な活用場面はイメージしづらいものの、仮説を試しながら問題解決につなげる考え方が日々の業務にも応用できると感じています。 比較で見える分析法は? 分析の基本的な進め方については、「分析は比較である」という考え方のもと、①目的・問いの明確化、②問いに対する仮説の設定、③必要データの収集、④分析による仮説の検証というサイクルを回すことが重要だと学びました。インパクト、ギャップ、トレンド、ばらつき、パターンなどの視点にも着目し、グラフや数値、数式を用いて視覚的に分かりやすく情報を提示することが求められます。仮説思考やフレームワークを活用して多角的に検討することで、データから有益な情報を引き出し、効果的な行動につなげることができると実感しました。

クリティカルシンキング入門

データ分析の力で見えない答えが見えてくる

分解という手法を学ぶ 与えられたデータをどのように活用するか、数字を味方にする「分解」という手法を学びました。情報を鵜吞みにするのではなく、手を動かしグラフ化するなどの簡単な工夫で、新たな分析・類推の元となることを再認識できました。 分解のポイントとは? 分解の方法にはいくつかのポイントがあります。基本として、MECE(モレなく、ダブりなく)を目指すこと。そして全体の範囲を明確に定義することで、精度が増すと感じました。層別分解(例:年代別)、変数分解(例:売上=単価×個数、どこが増減したか)、プロセス分解(例:入店⇒退店のプロセスで分ける)などの手法が紹介されましたが、感覚ではなく一つ一つ丁寧に試行錯誤することで、結果に繋がる可能性が広がります。仮に結果が出なかったとしても、その切り口に変化がないという情報が成果としてあり、失敗ではないと認識を新たに持つことができました。 MECEと分解方法の実務応用 業務上、様々な数値を取り扱う機会があります。新規業務のフロー作成時や集計業務、既存のルーティン業務に関しても、MECEや分解方法を意識することで、データの抽出方法が変わると感じました。 ミーティングでの分解活用法 新規業務フローのデータや数値取り纏め方法をMECE、分解方法を意識しながら切り口に変化をつけて分解を繰り返し、現状気付けていない数値の傾向や改善策を用意し、関係各署に意見具申していきます。ミーティングの機会も多いため、事前に議題を確認し自身の提案パートに関してはMECE・分解方法を意識し、他に懸念材料や他の提案方法がないかを模索する癖をつけます。 ルーティン化するための工夫 癖付けを具体的に行うため、項目ごとに分解方法をルーティン化します。まず全体の範囲を定義し、5W1Hで問題点を明文化し、分解方法と切り口を選定、MECEを意識して内容を再確認します。これを最低2往復行います。 方法の変化と学習の進捗 最適解とは思いませんが、反復トレーニングの一環として上記手法を学習期間中に実施し、途中で方法も変えていく予定です。

クリティカルシンキング入門

データ分析で発見した新たな視点

分解ってどう使う? データ分析を行う際、「分解」の重要性とその手法について新たな知識を得ることができました。単に数字を切りの良いポイントで区切るのではなく、まず全体を適切に定義し、必要な情報を明確にした上で、どこで分解すれば全体像が把握できるのかを試行錯誤することが重要であると演習を通して理解しました。 数字の見える化ってどう? さらに、数字をグラフ化して視覚的に表現したり、比率に変換して加工することで、数字だけでは発見しづらかった情報が明らかになることを学びました。分析の初めには、全体を定義して目的を設定し、MECEを意識しながら抜け漏れなく分析を進めることが、業務の効率的な進行に寄与することを認識しました。どのような結果になっても、価値や発見があり、それらはすべて自らの成長に繋がるものだと考え、ポイントを押さえて思考を続けていきたいです。 目的設定ってどうする? 売上やWebページのアクセス数を分析する際に、今までは表面的な数字を追うだけで、原因や改善点が明確になりませんでした。しかし、まず全体を定義して目的の方向性を決めることから始め、MECEを活用しながら漏れや重複を避けつつ課題を分解して解決を図りたいと考えています。分解後には、グラフや比率といったさまざまな視覚化方法を用いて、最適な分析手法を見つけ出し、短期・中期・長期目標の達成に必要なアプローチを定期的に戦略的に見直していきたいと思います。 毎月どうチェックする? 売上やWebページのアクセス数の分析を日々確認し、毎月、前月との比較を行いレポートを作成したいと考えています。基本的には、最初に決めたMECEを活用した分解で分析を進めていきますが、毎月自身の分析方法で問題が解決できているかを見直し、分類についても考え続けたいです。 PDCAをどう進める? 単一の仮説ではなく、2~3つの仮説を立て、その中から最も信頼性があり改善しやすいものを選び、行動に移していきます。2週間から1ヶ月試行し、うまくいかない場合は次の仮説で改善するというPDCAサイクルを実行していきたいと思います。

データ・アナリティクス入門

データ分析で広告効果を最大化する方法

サーチとコンバージョン分析のポイントは? 私は、定量データの処理方法や割合と実数値の使い分けについて学びました。広告のサーチ数やコンバージョン率を分析する際、実数値で成果を示すと共に、全体の成果に対する割合を表示することで、広告の効果がより明確になります。例えば、特定の広告が他の広告よりも高いコンバージョン率を示す場合、その差を強調するために割合を用いることが有効です。 リーチとフリクエンシーの効果的な可視化 データの加工方法や適切なグラフの選び方について学びました。リーチ(到達)とフリクエンシー(接触頻度)のデータをヒストグラムや折れ線グラフで視覚化することで、どの広告が最も効果的なリーチを達成しているか、または頻繁に接触されたが効果が薄い場合の改善点を容易に発見できます。 データクリーンルームを活用するには? 比較の重要性や仮説に基づく分析について学びました。データクリーンルームを活用する際、テレビとデジタル広告の重複接触を比較することで、効果的な広告の配置や接触頻度を見極める仮説を立て、そのデータを基に改善策を提示します。こうした定量的なデータとその適切な比較により、精度の高い分析が可能になります。 これらの学びを基に、分析プロセスの一貫性を保ちながらデータをより効率的に扱い、効果的な広告戦略を提案できるようになりました。 グラフを使ったデータの伝え方 グラフや可視化ツールを駆使することも重要です。データをグラフやチャートで可視化し、関係者にとって理解しやすい形で伝えます。特に、データの割合や実数値を比較する際には、視覚的に分かりやすいグラフを使用することで、複雑なデータを簡単に理解しやすくし、意思決定をサポートします。 どのように分析スキルを向上させるか? さらに、データ分析スキルの継続的な向上を目指します。新しいデータ分析手法やツールを学び、分析スキルを継続的に向上させます。広告業界で使用される分析ツールやシステムに精通することで、より効率的で精度の高い分析が可能となり、業務の成果を高めることができます。

デザイン思考入門

多様な視点で新発見のヒント

方向性はどう決める? 現場の課題改善のため、日々ブレインストーミングを実施しているものの、方向性が定まらず意見が偏ったり、アイデアがなかなか出にくい状況に陥ることがありました。そこで、今回、SCAMPER法をはじめ、シナリオ法やペーパープロトタイピングを用いて、カスタマージャーニーマップを想定しながらアイデアを考える手法を学びました。単に感覚任せでアイデアを募るのではなく、明確な視点を示しながら進めることで、より多様で有効なアイデアを導き出せることを実感しました。 実践はどう活かす? 実践演習では、まずSCAMPER法により概念的・多角的な視点からアイデアを出し、その後、技術的な実現可能性に着目したアイデア出し、最後に実現方法に焦点を当てたアイデア出しという流れで進めました。SCAMPER法は、直接的なアイデアが引き出しにくい場合でも、さまざまな視点を提供することで、思わぬアイデアを引き出すきっかけになると学びました。また、この方法により、メンバー間のバイアスによる意見の偏りも低減できる点が大きな収穫でした。 実現法はどう見える? 技術面で「どのように実現できるか」を考える過程では、SCAMPER法だけでは出なかった具体的なアイデアが登場し、視点の転換がアイデアの幅を広げる効果を実感しました。この視点の変化が、より実現性のあるアイデアを導く鍵であると感じました。 他部門との協力は? さらに、実現方法の検討段階では、他部門や他社との協力を視野に入れることで、課題を再確認し、より適切なアプローチが可能になると学びました。これにより、議論の幅が広がり、現状の課題に対して新たな解決策を見出す手法として非常に有意義であると感じました。 製品開発の秘訣は? また、製品コンセプトを考える際には、バリュープロポジションの明確化が不可欠であると再認識しました。万人にウケるものづくりは難しいかもしれませんが、企業の理念を大切にし、ターゲットを明確にすることで、より良い製品開発が実現できると学び、今後の実務に積極的に活かしていきたいと考えています。

データ・アナリティクス入門

仮説検証で見つける成長のヒント

どう仮説を練る? 前職で教えられた問題解決の手法は、実践する機会が十分にありませんでした。仮説を立てる際、まずは現状把握が最も重要であることを再認識しています。一つの仮説に直感的にたどり着くことはありますが、そこに固執せず、ほかの可能性も考慮した複数の仮説を検討することが、根拠のある仮説を生み出すポイントだと感じています。 検証の切り口は? 動画の一例で「仮説と検証を繰り返す」という考え方が大変印象に残りました。これまでにも同様の手法を試みたことはありましたが、せいぜい数回で終わってしまい、検証の繰り返しが十分ではありませんでした。そこで、自分自身の検証と例で示された検証方法との違い、たとえばアプローチの切り口などについて、改めて考えてみることにしました。 枠組みの意外性は? フレームワークに基づいて検証する方法も、抜け漏れのない仮説を構築できる可能性を秘めています。フレームワークを利用することで、新たな発想や類推が生まれることが期待できる一方、自由な発想では偏りが生じやすく、適切な仮説検証が難しいと感じています。 時間がかかる理由は? また、他の社員と比べて明らかに時間を要している業務があります。正直なところ、その業務が自分に合っていない、あるいは心理的に好ましくないという言い訳をしてしまっていました。しかし、他者との比較を通じて何が原因なのかを見極め、行動に入る前の準備段階に問題がないか、あるいは結論から逆算したアプローチができているかを、仮説の検証とシミュレーションで実際に検証しているところです。 取り組みは十分? これらの対策は現在進行中です。現状を正確に把握し、問題点を見極めた上で、重要な局面で目指すべき状態や、そもそもやるべきことが実施できているかを確認しています。業務は忙しく時間的制約もありますが、抜け漏れがないか、逆算して工程を検証する取り組みを並行して行うことで、苦手な業務の改善につなげたいと考えています。もしうまくいかなかった場合は、さらなる仮説を立てて改善に取り組んでいくつもりです。

「改善 × 手法」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right