クリティカルシンキング入門

視野を広げるための問いかけの力

分析時に問いかけの重要性とは? 分析の目的を「問いかけ」から始めることの重要性を学びました。具体的なテーマを最初に決めてしまうと視野を狭めてしまう可能性があります。そのため、「何のために?」と問いかけることからスタートし、具体化することが大切です。また、チームで物事を進める際には、ゴール(目的)を明確にしておくことで、本質から脱線することを防ぐ効果があると理解しました。この認識を忘れないように、何度も共有することを徹底したいと思います。 新規企画にどう役立てる? 新しいサイトやサービスの企画や改善の際にも、この方法が役立つと感じました。たとえば、上司から「このシステムを導入するために資料を作って会議をセットしておいて」と指示を受けることがあります。その際、イシューを明確にしておくことが効果的だと思いました。 効率的なミーティングの準備法は? これまで私は、新しいサイトやサービスを企画する際、「●●について」とテーマを限定してキックオフの資料を準備していました。今後は、事前に情報を分解し、目的を問いかけることでテーマを具体化した状態で会議に望もうと思いました。責任者からスピーディーな改善を求められることが多い中、これにより時間の節約にも期待が持てます。また、データ分析を用いて現状の数値をしっかり把握することで、改善後の効果測定も行いやすくなると感じました。

クリティカルシンキング入門

イシュー発見で未来を拓く学び

イシューはどう見抜く? 課題解決を進めるためには、まずイシューを特定することが重要です。これは、課題に対して最適かつ迅速な解決策を導くための基本であり、どの取り組みが最も効果的に課題を解決できるかを明確にするためです。具体的には、データを分解してイシューの特定を容易にし、内部環境と外部環境を分析することで、課題の本質を正確に把握する必要があります。さらに、イシューを問いの形にし、具体的かつ一貫して検討する点にも留意することが大切です。 IT戦略はどう考える? 学んだ手法とその解決方法を、自社業務と顧客先業務の双方に活かすことができると感じています。自社業務では、IT戦略を考える上で、どの領域に投資するかを提案することを目的とします。まず、自社の売上データを分解し、内部・外部環境を分析することで、ビジネスインパクトの大きい領域を特定します。その上で、従来のIT導入を促す戦略ではなく、顧客企業の利益向上を目的とした戦略を検討するための問いを立てたいと考えています。 業務効率改善はどう進む? 一方、顧客先業務においては、業務効率化を提案することが目的です。具体的には、システム検証業務において最も時間がかかる工程を確認し、どのタスクを削減できるかという問いを設定することで、より効率的な業務改善に繋げることができると考えます。

クリティカルシンキング入門

数字が紡ぐ学びのストーリー

数字をどう分解する? 数字はグラフ化することで、視覚的かつ直感的に捉えやすくなり、説得力が増します。そのため、数字から情報を得る際は、ひと手間加えて分解することが重要です。ただし、単に区切るのではなく、仮定を立てた上でMICEを意識した切り口で分解する必要があります。分析を進めて結論にたどり着く過程では、短絡的な判断を避け、「本当にそうか?」と立ち止まって丁寧に確認する姿勢が求められます。 システムプロジェクトで何が大事? システムの導入や改修、さらには現行システムの廃止などのプロジェクトを進める際には、現状の課題と期待される改善点を明確に提示するために、数字を用いたデータ分析が役立ちます。システム関連のプロジェクトは多額の費用が動くため、慎重な判断が必要です。そのため、さまざまな切り口からデータを分解し、要件と費用の比較検討に活かすことが大切です。また、社員向け研修の終了後には、受講者アンケートの結果を分析し、そのフィードバックを次の計画に反映させる方法も有効です。 苦手意識はどう克服? 一方で、数字に対して苦手意識を持つ人もいます。私自身、業務で直接データを扱う機会はあまりありませんが、定期的に報告される各種レポートを基に、MICEを意識した分解の手法やデータの取り扱いに徐々に慣れていきたいと考えています。

データ・アナリティクス入門

プロセス分解で見つけたヒント

なぜ分解して考える? プロセスを分解して問題の本質に迫る手法について、非常に分かりやすい事例から学ぶことができました。特に、採用プロセスの一部である中途採用面談や、顧客への提案における在庫差異の問題解決に、このアプローチを活用できると感じています。また、ABテストにおいては、条件をできる限り同一とし、検証範囲を絞るための仮説設定が重要である点も再認識しました。 採用面談、何が問題? まず、中途採用面談に関しては、自身が関与する採用活動において、プロセスのどの部分で問題が発生しているのかを明確にするため、面談調整に要する日数と採用結果の情報を人事部から収集することを検討しています。この情報をもとに、面談調整に時間がかかる原因を特定し、改善策を提言することで、採用率の向上を図ることができると考えています。 在庫の差異、どう解決? 次に、顧客への提案、特にシステム間の在庫差異に関する課題解決では、既に現状の業務プロセス分析は実施していますが、課題が発生しているプロセスの粒度が細かすぎるため、より単純化した形で説明する必要性を感じました。問題となりうる箇所を明示した上で、システム改善または運用プロセスの変更のいずれかを提案し、顧客にとって最適な解決策を提示していく考えです。

データ・アナリティクス入門

データ分析で見えてくる未来へのヒント

データ分析の基礎を理解するには? データ分析を始めるにあたり、まずはデータの形式を理解し、その違いを把握することが重要だと感じました。分析に必要なデータを集め、形式に合わせた加工を施し、さらに可視化することで示唆を得る流れを認識しました。特に、データの性質をしっかり理解しないままでは、可視化しても意味がないことを学びました。 どう業務課題を探索する? 例えば、各店舗での様々な商品の契約状況から、それぞれの商品の契約者に共通する特徴を可視化したり、取引履歴と商品の契約状況の関連性を探るといった作業は、まずデータの性質を把握することから始まります。データを比較し、その特徴を掴むことで、業務課題に関連するデータが何であるかを見極めることができます。 他社事例をどう活かす? また、他社のデータ活用事例を知ることで、自社の業務に置き換えて考え、業務上の課題を発見する手がかりとすることができました。社内においても、各種システムで収集・蓄積されているデータの内容を把握し、それを整理して業務課題を解決するための手法を模索することが大切です。こうしたプロセスを経て、データの性質を十分に理解し、適切に可視化し比較することで、より良い業務改善に繋げることができると感じました。

データ・アナリティクス入門

ここにあった!生存者バイアスの真実

弾痕が少ない理由は? 今回の研修で最も印象に残ったのは、戦闘機の補強に関する話でした。弾痕が多く残っている部分ではなく、むしろ弾痕が少ない部分を補強すべきという考え方に驚かされました。この事例は「生存者バイアス」と呼ばれ、帰還できなかった機体の状況を無視すると正しい判断ができないという重要な教訓を示していました。 比較対象の選び方は? また、分析の基本は「比較」というシンプルな考え方に基づいているものの、適切な比較対象を選ぶことや、見えにくいデータに注目することの難しさと大切さを改めて実感しました。 データ比較で改善策は? 私が担当しているシステム開発プロジェクトにおいては、テスト工程でのバグ検出率向上が課題です。そこで、研修で学んだ比較の考え方を活用し、成功事例と失敗事例のデータ、たとえばテスト時間やレビュー時間を比較することで、より効果的な改善策を見出していきたいと考えています。 比較難点をどう乗り越える? ただし、比較対象の条件が必ずしも揃っていないケースや、対照となる対象そのものが存在しない場合など、現実のデータ分析では困難な点もあります。こうした状況では、新しいデータの収集や、比較方法の検討をさらに深掘りしていく必要があると感じました。

クリティカルシンキング入門

具体で魅せる!伝わるプレゼン術

今回の学習で、私は以下の2点を学びました。 具体内容の合意は? まず1点目は、イシューの留意点についてです。合意形成の際には抽象的な表現ではなく、具体的な内容に落とし込むことの重要性を改めて認識しました。例えば、上司や関係者との目標設定の際に、単に「売上げUP」といった漠然とした表現ではなく、「○〇分野での機器販売について、売上げUP」のように具体的に提示することで、プロジェクトやサービス導入の計画・遂行における合意形成をより確実なものにできると感じました。これに基づき、今後は行動計画として、イシューを十分に具体化してからプラン策定に入るよう努めていきます。 スライドはどう伝える? 2点目は、スライド作成時の効果的な方法についてです。プロジェクトやサービス導入の説明において、よりわかりやすい資料作りが求められる中、グラフの活用やアイコンの設置、タイトルの工夫、レイアウトの見直しなど、実践的なポイントを学びました。直近の部門内でのシステム改修に関する説明では、これらの学びを実際に取り入れ、より伝わりやすいスライド作成に取り組む計画です。今まで以上に分かりやすい資料となるか、レビューを通して改善していきたいと考えています。

データ・アナリティクス入門

目的が明日のヒントになる

問題点は何でしょう? 何が問題かを明確にし、結論のイメージを持ちながら取り組むことが大切だと感じました。何を解決したいのかを考えることで、目的に立ち返ることができるため、数字をどのようなグラフで表現するか悩む場面でも、考え方の整理が進みました。データ分析においては、仮説思考が基本であるとも実感しています。 プロジェクトの目的は? 業務改善プロジェクトに取り組む際には、まず目的の設定が不可欠です。進める中で何を解決したいのか、そして最終的な結論のイメージを持ちながら作業を進めたいと考えています。現状では、システムや運用の活用率といったデータが中心ですが、活用と非活用という単純な区分のみで目的に沿った分析が可能かどうか、再度検討する必要があるように思います。 誰にでも分かる目的は? 目的設定については、誰にでもすぐにイメージできるような分かりやすいものにすることが重要です。現在取り扱っているデータから新たな気づきが得られないか、また、ほかのデータを追加することで見えてくる可能性があるかどうかにも注目していきたいと思います。

データ・アナリティクス入門

フレームワークで学びを変える

フレームワークの意義は? 仮説の基本的な理解を改めて振り返ることができました。これまで、どちらかというと自分のバイアスに左右されることが多かったですが、3Cや4Pといったフレームワークに沿って物事を進める習慣が必要だと実感しました。もちろん、データの活用において都合の良い点に気付いてしまう傾向もあり、そこは今後の課題です。 チーム作業に注意すべき? また、実際の業務においては、ある程度の人数で構成されるチームで作業を進める場合、フレームワークを用いる際に工夫が求められることを改めて認識しました。それでも、基本に則って作業を進めることが、合意形成を図る上で重要であると感じました。 合意形成、どう進める? 変革やシステムの刷新・改善といった業務では、関連部門との合意形成が不可欠です。こうした基本的なプロセスをフレームワークに落とし込むことで、問題の根本をより深く理解し、具体的なアクションプランを立てることができると考えています。

クリティカルシンキング入門

分解で変わる!見える真実

数値分解はどうする? ITの現場では原因分析のシーンが何度もあり、今回の学習は具体的な分析手法を再確認する良い機会となりました。特に、数値をどの要素で分解するかが重要で、正確に分けないと誤解を招く恐れがあるという点は、日常的に直面している課題でした。そのため、今後は多角的な視点で分解することを意識したいと考えています。 印象改善はどう実現? また、プレゼンテーションなど、相手に良い印象を与えたいシーンにおいても、事実と異ならない範囲で資料を工夫する手法として、この学びを活用できると感じました。 不具合原因の見直しは? システム構築における不具合の数や原因分析の場面でも有用であるため、既存の分析フォーマットの中から今回の学びで得た要素を見直すことにします。さらに、部下と行う1on1でのヒアリングシーンにおいて、メンバーが抱える不安や不満などのメンタル的な問題に対しても、役立てられないか検討したいと思います。

データ・アナリティクス入門

実践へつなぐ振り返りのヒント

プロセス整理の効果は? これまでの学びを活かして課題に取り組む過程で、プロセスごとに整理して考えることで、闇雲に取り組むよりも効率的に時間を短縮できることを実感しました。今後は、What→Where→Why→Howの視点を意識しながら課題解決に臨んでいきたいと考えています。実務ではまだ訓練が必要だと感じるため、講義で学んだ自分の身近で取り組みやすい内容から実践していこうと思います。 データ活用の成果は? 2ヶ月前に新たな環境やシステムが導入されたため、その効果を検証する目的でデータを活用してみたいと思います。もし改善が見られない場合には、改めてWhat→Where→Why→Howのアプローチを試してみるつもりです。 新手法の可能性は? また、A/B分析の活用場面は現状の職場では明確な適用例は思い浮かびませんが、新たに検査項目を導入する際には有効な手法となる可能性があると考えています。

アカウンティング入門

BSで知る企業の秘密

なぜBSを学ぶのか? これまでPLに比べ、BSに触れる機会は少なかったのですが、今回改めて学ぶことで基本的な構造を理解することができました。 資産バランスはどう見る? ざっくりとした理解ですが、現金化しやすい順から資産が整理され、保有する資産が流動資産なのか固定資産なのか、また負債が1年以内に返済が必要な流動負債なのか、長期的な返済が求められる固定負債なのか、こうしたバランス関係が企業の事業特性や体質を判断する手がかりになると学びました。 BS活用は実務でどう? 実務においてBSを直接活用する機会はあまり想像できませんが、同じ業種に限らずさまざまな企業のBSを確認する習慣をつけることで、多様な企業の特徴を把握できると感じています。たとえば、システム提案の機会において、顧客の財務上の課題を明確にし、IT投資による改善策を提案する際に、この知識は大いに役立つと考えられます。
AIコーチング導線バナー

「改善 × システム」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right