デザイン思考入門

試作とフィードバックで見つける新たな一歩

目的と設計はどう変わる? 自分の目的と相手の目的を整理しながら、自社のWebサイトの設計を見直す必要性を感じました。無形商材の場合、ユーザーに疑似体験させる工夫が重要で、サービスの流れや機能を紙やスライドで視覚化し、細かいフィードバックを受けることが効果的だと考えています。 試作で何を掴む? 試作(テスト)からフィードバックを迅速に得ることが大切です。また、どのようなフィードバックを求めるかという視点を事前に持つことも必要だと感じました。課題の定義や情報設計が漠然としていると、良い試作へとつながりにくいため、前提をしっかり作り込み、アイデアを十分に出し切ることが重要です。 小さな挑戦はどう効く? さらに、小さな試みを積み重ねることで、結果的に近道が見えてくると実感しています。正解へいち早く辿り着きたいという焦りが、かえってネックになることもあるため、スピード感と丁寧さの両面を大切にしていきたいと思います。 情報設計で成果を出す? 情報設計においては、自分の目的と相手の目的を再検討し、課題の定義と連動させる余地があると感じています。さまざまなプロトタイプが存在し、それぞれの簡易さや工程の多さに違いはあるものの、得られるフィードバックの質にも個性があり、細かな確認を積み重ねることで質の高い成果物を生み出すと確信しています。

データ・アナリティクス入門

分析で見つける未知の可能性

分析開始の目的は? 実際に分析を始める前に、その分析の目的を明確にすることが重要です。目的が曖昧では、分析自体の意味がなくなります。分析の本質は比較にあります。比較を行わなければ、物事の良否を判断することはできませんし、絶対的に良いものや悪いものというものも存在しません。意思決定が相対的な比較によって行われると考えると、分析(比較)の重要性が一層理解されます。 比較対象の選び方は? そのためには、適切な比較対象を選ぶことが必要です。しかし、すべての情報を持っているわけではなく、自分の理解が正しいかもわからないため、この作業は現実としては難しいこともあります。 解決すべき課題は? 分析を通じて解決したい課題は多岐にわたります。たとえば、効果的な授業や学習方法を知りたいとき、また生徒募集活動をどの地域で積極的に行うべきか、生徒や保護者の学校への満足度、勤務校の強みと弱みの分析などです。これらの目的を達成するために、適切な分析を行うことが望ましいです。 どんなデータ収集? まずは、各目的に応じたデータ収集から始めたいと考えています。生徒の成績推移や大学合格実績といった定量分析に加え、アンケートやインタビュー(個人・集団)による定性分析も通じて、データを集め、その中から中核となる特質を抽出するようにしたいです。

クリティカルシンキング入門

多彩な視点で広がる思考の旅

思考の偏りをどう克服する? 思考の偏りや質問の誘導を意識しながら物事を捉えるトレーニングが必要だと感じました。ひとつのテーマに対しても個人の属性や立場によって様々な意見や視点が出てくることを再認識し、自分一人で同じように抽出するためには何ができるのかを考えました。 まず、自身に偏りがあり、考えが誘導される要素があることを認識することが重要です。それを自覚した上で、物事を捉えることで思考の幅と高さが広がると思います。 問い掛けの精度をどう向上? 骨子作成の段階で目的に対する問い掛けの精度を向上させることが必要です。取引先や関連部署のニーズ把握と、具体的なソリューション提供にこれを活用できると考えています。何をどうしたいのかをセットし、それに対してどの視点で切り口を設けるのか、現状把握が正しく行われているのかを明確に論理的にすることで、自身や自社の成果に繋げられると思います。 現状分析と課題抽出のポイント 具体的には以下の2点が挙げられます。 1. 現状分析の質の向上:意図的に通常費やしている工数を倍に設け、目的に対しての分解につながっているかを確認する。 2. 課題抽出の広がりの意識:MECEフレームワークの意識と徹底を行い、余裕を持った上司や同僚からの意見抽出の場を設定する。他者の視点の重要性を再認識したためです。

デザイン思考入門

大局と小さな一歩が未来を創る

デザイン思考は何が目的? デザイン思考とは、目標達成のための有効なツールの一つです。どのようなツールが存在し、どのように活用できるかを並べながら、目標に向かう具体的な手順やステップを考え、実行していくプロセスです。 課題発見はどう行う? まず、問題がどこに存在するのかを見える化し、自分の思い描くものではなく、相手が求める価値をしっかりとデザインし、提案することが大切です。問題から生み出されるニーズにフォーカスすることで、デザイン思考を用いて到達点の明確化と、その実現に向けた小さなステップを計画することが可能となります。 全体像は見えてる? また、目の前の小さなステップや個人のやりたいことに固執せず、全体像を俯瞰した視点で取り組む姿勢が求められます。大局を見失わず、一歩一歩着実に進んでいくことが、目標達成への近道となります。 ニーズ調査の意義は? さらに、丁寧なニーズ調査を行うことで、利用者や市民の実際のニーズを具体的に把握し、そのニーズに合った到達点を思い描くことができます。 協働モデルはどう? たとえば、関係者と共に新たな地域交通モデルの構築に取り組む場合、まずは関係する各方面の現状やニーズを共有し、どの方向を目指すべきか、全員でモデル像を具体的に描いていくことが重要となります。

クリティカルシンキング入門

問題解決の全体像に迫る 分解の力

物事の分解で何が見えてくる? 物事を分解することで問題の特定や後続の対策が立てやすくなると感じました。特に、目的を意識しながらどのように分解すれば感度良く対応できるかを最初に考えることが重要です。 問題解決の4ステップとは? 問題解決のステップとしては、What→Where→Why→Howの順番を意識することが大切です。しかし、実際にはいきなりWhyやHowに進んでしまう場面もよく見かけます。この点を改善することで、より効果的な問題解決が可能となるでしょう。 トレンド分解にはどんな方法が? トレンドを分解する際には層別分解が役に立ちますが、データを活用した商品企画に適用する場合にはプロセス分解が求められます。プロセス分解では具体的に何をしているのか、何を決めるのかを明確にしなければ、「入店」や「着席」といった単純な分け方になりがちです。 チームサポートに必要な視点は? また、チームメンバーが困っていることや解決すべき課題を見据えた上で整理のアドバイスをしていくことが必要です。プロセスで困っているのか、情報の捉え方で困っているのかを見極めることがポイントです。 売上分析に層別を活用するには? 売上についても触れるシーンがあるため、層別や変数別の考え方を忘れずに、定期的に使ってみることが求められます。

アカウンティング入門

お金で読み解く自社の知られざる価値

お金の視点、どう捉える? 改めて会社内のさまざまな活動を、お金の動きという視点で捉えるという考え方が新鮮で、とても興味深く感じました。社内のデータやその基になる活動を詳しく調べる中で、実は自分たちの会社についてあまり知られていない部分が多いことに気付かされました。今後は、何事においてもお金の流れという側面を意識して理解を深める習慣をつけたいと思います。 事業部比較はなぜ? 現在、複数の事業を展開する自社において、事業部別の事業構造や実態を比較把握するプロジェクトに取り組んでいます。このプロジェクトの内容は、改めて自社の活動をお金の動きの観点から理解するという視点と直結していると感じました。特に、私たちの企業は設備投資をあまり必要としない労働集約型であり、人材が最も重要な資産であることから、その活動を金銭面でも検証してみたいと考えています。 活動はどう検証する? まずは、どのような活動が行われているのかを明確に列挙する必要があります。続いて、それらを体系的に整理し、活動の目的や実態、課題などを明らかにした上で、金銭的な要素も加えていくつもりです。人的資本経営という視点では、誰が誰に対してどのような目的でどんな活動をしているのかをすべて定量化するのは難しいものの、可能な限り数値で表せるよう努めていきたいと思います。

データ・アナリティクス入門

仮説が導く学びの開花

仮説検証ってどう進める? 仮説には、結論を導くための仮説と課題解決を目指すための仮説の2種類があります。これらの仮説を検証するためには、まず誰に、どのようにデータを収集するかを明確にし、収集作業に入ることが必要です。一方的な観点に偏らず、反論を排除できる十分な異なる視点からデータを集めることで、仮説の検証はより説得力を増します。日々の業務の中で仮説を持つことにより、課題意識が向上し、目的が明確になるため、進むべき道に迷いが生じにくくなります。 大企画はどう進める? また、時間外労働の削減だけでなく、育児などで定時退勤が求められるメンバーもいるため、特に大きな企画や業務においては、仮説を立てた上でクリティカルに仕事を進める必要性を再認識しました。同時進行している別の案件の仮説に影響を受けることもありますが、データ収集と検証によってその関連性を明確にし、業務を円滑に進めていきたいと考えています。 調査票はどう作る? 現在取り組んでいるアンケート調査では、調査票設計の際に各項目についての観点や視点を検討しました。時間が限られていたため、場合分けが十分でなかった可能性もありますが、調査票は既に完成しており、明日から調査を実施する予定です。今回のアンケート調査の関連証拠として、データの特定を進めていきます。

デザイン思考入門

人間味あふれる学びの現場

さまざまな受講生の特徴は? 多様な職業や経歴を持つ受講生が集まっている点が、まず印象に残っています。講座で学ぶデザイン思考は、システマチックかつ洗練されたアプローチに見えながらも、その実践過程は人間中心であり、実際の現場で必要な泥臭い努力が感じられるのが魅力的です。今後6週間のカリキュラムを通じて、社会問題への取り組みなど様々な課題意識を持った方々との交流や議論から、新たな視点と学びを得ることを楽しみにしています。 デジタル活用の進め方は? 自身の業務では、最新のデジタルやAI技術関連の施策を実際の業務に落とし込む際に、デザイン思考のアプローチを活用していこうと考えています。技術の利用自体が目的とならないよう注意しつつ、各社員の業務の生産性や効率性向上を主眼に、利用者である社員を中心に据えたプロセス作りができると期待しています。 現場との連携はどう? また、単にデジタルやAI関連施策を実装するのではなく、実際に業務を担当する社員と積極的にコミュニケーションをとりながら進めることが重要だと考えます。現状の業務プロセスについての課題インタビューや一緒に業務を進める取り組みを通じて、業務理解と担当社員の課題意識をより深く共有することで、施策の価値や利益を関係者に適切に伝えられるようになると確信しています。

データ・アナリティクス入門

データで挑む問題解決の旅

問題解決の順序はどう? 問題解決のステップとして、「What, Where, Why, How」の順序で進めることが重要です。やみくもに分析を開始するのではなく、順序立てて進め、数字に基づいたストーリーを構築することが求められます。データ分析においては、比較対象をはっきりさせ、集めたデータをしっかりと加工し、原因を特定する努力が重要です。 採用改善はどう進める? 採用手法を模索する中で、SNSや自社サイトの採用ページの改善を進めるには、コンバージョン率やファネル分析を活用して、離脱ポイントを特定することが有効だと考えました。それにより、コンテンツの見直しも可能になります。 企画提案の進め方は? このように分析を進める際は、初めに仮説を立て、結論のイメージを持つことが肝要です。何のために分析をするのか目的を明確にし、課題を特定するステップで進行することが大切です。特に、来年度に向けての企画提案の時期においては、データを活用して説得力のある資料を作成したいと考えています。そのために、データ分析の手法を復習し、自分自身の知識として確立する必要があります。また、データをさらに深く理解するためには、エクセルの関数についても知識を深めることが必要そうです。これについては、AIを活用し、日々学び続けたいと思っています。

データ・アナリティクス入門

実践で切り拓く学びの扉

A/Bテストは何が見える? A/Bテストは、2つの施策を比較し、どちらがより適しているのかを実際のユーザー行動に基づいて判断する有効な手法です。アメリカ大統領選などの大規模な事例でも用いられている点が印象的で、仮説だけでなく実績に裏打ちされた評価がとても参考になりました。 演習で何を実感した? また、演習を通じて、問題の各要素をステップごとに分解することで、どのデータを抽出すればよいかが具体的に見えてきます。こうしたプロセスは、原因の特定を容易にし、問題解決に向けた新たな視点を提供してくれました。 業務再構築はどう進める? 社内業務の再構築にあたっては、まず課題を洗い出し分類した上で、それぞれの課題のどこに原因があるのかを要素ごとに分解して検証する方法が効果的だと感じました。Howに飛びつく前に、What、Where、Whyの各段階を踏むことで、より論理的に解決策を見いだすことができると思います。 原因探しで見つけたヒントは? さらに、課題に対する取り組みでは、要素を段階ごとに書き出す過程が、問題自体の理解を深め、原因の特定に大いに役立ちました。その後、適切なフレームワークを用いて目的に沿った仮説を立て、多角的な視点から検討することで、より実践的な解析が可能になると実感しました。

データ・アナリティクス入門

業務に役立つ分析スキルを身につける方法

予測を立てる重要性は? グラフなどの資料を見る際、自分なりの予測を立て、仮説を立てて実態との違いを確認することは重要です。このプロセスでは、仮説の誤りをマイナスに捉えず、新たな課題や問題に気づく機会として扱うことが求められます。 分析のサイクルをどう回す? 分析の基本である「目的・仮説・データ収集・仮説検証」のサイクルを回すことについては、業務で分析を行う際に疎かになっていたと反省しました。数字に集約した分析を学ぶなかで、代表値(単純平均、加重平均、幾何平均、中央値)や散らばり(標準偏差)のそれぞれが適した状況で使い分けることが重要であると再認識しました。 患者数低下の原因とは? 紹介患者数の低下対策を立案する際、まず分析のプロセスをしっかりと踏むことが大切です。特に目的を明確にすることで、求めたい結果を得るためのポイントとなります。次に、どの視点で分析を進めるかを判断し、グラフや数字を用いて実行していきます。 具体的には、紹介患者数低下の分析では、近隣医療機関からの紹介の減少が課題(目的・問い)となります。減少の要因について仮説を立て、その後、取るべき分析の視点(インパクト・ギャップ・トレンド等)を考慮してデータを収集し、グラフ化・数値化します。最後に、分析結果と仮説を検証し、対策を立案します。

データ・アナリティクス入門

言語化と分析で見える未来

比較ってどう見る? 分析とは比較することであり、これまであまり意識してこなかった点でしたが、意識することで適切な図表や色の検討が可能になります。根底にあるのは目的であり、目的を意識することで、比較して何を伝えたいのかが明確になります。 自分化の意味は? 学びのプロセスにおいて、「言語化」「教訓化」「自分化」は非常に重要な考え方です。特に、教訓化と自分化が自分自身の成長に大きく寄与すると実感しています。 施策にどう活かす? 業務を分析し、施策を練る際には、根拠となる情報を集めて問題点を特定することが有効です。また、「言語化」と「教訓化」を意識することで、会議などで他人の進捗状況を聞いた際に、自分の考えの幅や経験値を広げる一助となっています。 仮説はどう考える? 分析に取り組む際は、目的を常に意識することが大切です。まずは「現状を可視化する」ために図表化を実施し、その結果を踏まえて仮説を立案します。そこから、より限定的な部分の分析を進めることで、精度の高い課題の解決へと結び付けています。 会議はどう捉える? 内部の会議においては、ただ受け身で情報を聞くのではなく、他人の発言をそのまま鵜呑みにせず、原理原則を抽出して自分自身の状況にどう反映できるかを検討することが重要であると感じました。

「課題 × 目的」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right