戦略思考入門

振り返りで見えた「選択」のコツ

根拠は明確なの? 選択を行う際には、捨てるべき情報について明確に理由を説明することが重要です。その説明には、確かな根拠が必要であり、それを集める努力も欠かせません。ただし、エビデンスが不足している場合には、仮説思考を用いることが有益です。しかし、仮説思考では個人や状況によって結論が異なるため、日頃から訓練をし、フレームワークを活用することが求められます。 本当に捨てるべき? 現在の環境では「とりあえずやってみよう」という精神が広まっていますが、それと同時に「何を捨てるべきか?」を問いかけ、考えることが必要です。これには、会議やミーティング、1on1など、様々な場面で追加と削除を意識的に考える習慣をつけることが重要です。 会議の意義を問う? 慣習的に行われている会合や情報共有のチャット、会議など、多くの人の時間を奪ってしまうものについては、目的と意義を見直し、廃止したり統合したりできるかを検討します。そして、その結果をもとに、新しい時間の使い方を提案していくことが大切です。

データ・アナリティクス入門

データを読む力で広がる新視点

数字の壁は本当? データ分析に関して、「数字が得意でないとできない」という思い込みがありましたが、実際にはデータの読解力が重要だと感じました。データと情報を比較することで状況を把握しやすくしたり、意思決定をしやすくする手法の一つとして、どのような目的や仮説で分析を行うのかが最も重要な根幹部分であることに気づきました。 旅行動向はどう? 具体的な例として、訪日旅行観光客の市場動向と顧客行動の把握があります。どの国からの訪日観光客が増えているか、減っているか、滞在日数、1人当たりの消費額、訪問都市やその数、そして訪日旅行に求めていることや課題について分析しました。 立ち位置はどう評価? 会社が策定している中期経営計画の目標達成のためには、訪日旅行という分野において、自社が業界内でどのような立ち位置や状態になるべきかを明確にする必要があります。そして、その状態を達成するために必要となる情報やデータを考慮し、どのような戦略を打ち出すべきなのかについて検討することが求められます。

データ・アナリティクス入門

データが映す問題解決の一歩

データ分析前の課題は? データ分析を始める前に、まず何が問題なのかを明確にし、その問題がどこで発生しているのかを確認することが重要です。分析の基本は分解にあり、目的に応じて様々な視点で切り分ける際、階層の違いに注意する必要があります。たとえば、where、why、howの順序を意識することで、基本に立ち返ることができます。 検証方法はどうする? 実際の業務においては、前月の業績(予実差)を基に問題を設定し、どこから問題が生じているのかを調べます。その際、自分の感覚だけではなく、データ上で本当にそう言えるかをしっかりと検証することが求められます。結果を先入観として捉えず、データに基づいた事実を導き出す姿勢が大切です。 振り返りの進め方は? 毎月の業績振り返りでは、改めて何が問題なのかを定め、具体的な発生箇所を探るプロセスを実践します。このプロセスを通じて、自身の直感が正しいかどうかをデータを用いて検証し、結果ありきでデータを選び出さないことを意識することが求められます。

データ・アナリティクス入門

目的再確認で磨く鋭い分析

計画の反省点は? これまで計画的な勉強をせずに分析業務を進めてきましたが、これまでの経験を体系的に整理できたと感じています。 比較検討する意味は? 特に印象に残ったのは、目的と比較対象を再確認することで、分析の内容がより鋭くなった点です。どの手法や見せ方を選ぶかは、結論を導き出しほかの人に共有する上で重要であり、データに応じた適切な手法の選択が求められます。 共有の大切さは? 今後は、何を目指し何と比較するのかを具体的かつ明確にし、チーム内でしっかりと共有することを徹底していきたいと考えています。これにより、分析結果がより精度の高い仮説検証に繋がり、プロセス全体の質が向上すると思います。 挑戦の意義は? 具体的には、フォローアップや分析の都度、目的を直接再確認すること、目指すべきものと比較対象をはっきりさせた上で最初にチームと確認し合うプロセスを重視しています。また、習得した分析手法を活かし、普段あまり使用しなかった方法にも意識的に挑戦するよう心掛けています。

戦略思考入門

共通認識が開く改善の扉

議論の進め方は? 同じテーマを複数人で検討する場合、効率的かつ効果的に進めるためには、目的やゴールに沿ってどのように議論を進めていくのか、検討すべき要素に共通の認識を持つことが不可欠です。これを整理しないと、各人が自分の関心に基づいて検討を進めてしまい、視点がずれてしまいます。 どうやって認識合わせ? 共通認識を形成するためには、まず検討対象を俯瞰的に捉え、漏れなく重複なく要素を抽出することが重要です。その際、3C分析、SWOT分析、バリューチェーン分析などのフレームワークが非常に有用です。 改善策はどうする? 具体的なアプローチとしては、まず自分が担当している事業について、これらのフレームワークを活用して分析を行います。そして、その分析結果を同じチームのメンバーと共有し、今後の改善策について議論することが求められます。特に、バリューチェーンのどこに課題があり、コスト分析を通じてどの部分がネックとなっているのかを明らかにすることが、改善策の策定に役立つと感じました。

データ・アナリティクス入門

平均に隠されたデータの真実

代表値の意味は? データを理解する際、代表値の考え方が基本であると学びました。代表値には単純平均、加重平均、幾何平均、中央値などがあり、たとえ二つの集団で平均値が同じでも、ばらつきの度合いによって集団の実態は大きく異なることがわかります。ばらつきは標準偏差という指標で表され、また、グラフを用いてデータを視覚化することで、説得力が増すことも学びました。 報告書のポイントは? 報告書にデータやグラフを用いる際には、より意味のある情報を見出すことが重要です。平均値だけでは集団の性質を十分に理解できないため、ばらつきなど他の要素も加味し、「本当にそう言えるのか?」と多角的に考える必要があると感じました。 分析目的は何? そのため、まず何のための分析なのか、その目的を明確にすることが大切です。次に、必要なデータを特定し、信頼できる情報源から取得すること。そして、代表値や標準偏差をどう活用すれば集団の性質が理解できるのかを考慮しながら、データを適切に扱いたいと思います。

クリティカルシンキング入門

多面的分析で見つけるユーザーの真実

分析の目的はどう設定する? 数字整理の段階で、分析の目的や仮説を設定して作業を進めることの重要性を学びました。この方法により、さまざまな観点から結果を導き出せることがわかりました。また、分析前にMECEやロジックツリーを活用して要素を整理することで、抜け漏れのない分析が可能であることも学習しました。 多様な切り口で何を掘り下げる? この手法は、社内システムに対するユーザー満足度調査の分析に役立つと感じています。以前は、部署毎や勤続年数などの一般的な数値のみでの分析にとどまっていましたが、より多様な切り口で分析を進めることで、真のニーズを掘り下げることができるのではないかと考えています。 ロジックツリーの作成はどうする? まず、ロジックツリーを手書きで作成し、可視化します。そして、それを基にしてExcelのピボットテーブルを活用し、他にどのような切り口があるかを常に自問しながら分析を進めます。あわせて、MECEによるモレやダブりがないかにも注意を払っています。

データ・アナリティクス入門

代表値だけじゃない分析の魅力

代表値は何が最適? 代表値としては、単純平均、加重平均、幾何平均、中央値などがあり、データの内容に応じて使い分けることが求められます。たった一種類の代表値だけを見てしまうと、判断を誤る可能性があるため、標準偏差も含め、データがどれだけ散らばっているか、もしくはまとまっているかといった視点も重要です。 データはどう分析? これまで契約データの分析では、各代表値をそれぞれの視点から確認し、常に多角的なアプローチをとってきました。これにより、一方に偏ることなく、データ全体の特徴をしっかりと把握することができました。CAGRを用いていた部分も、実は幾何平均の単年度バージョンとして捉えることができると考えています。 今後の判断はどう? 今後も、ただ一つの代表値に依存するのではなく、複数の指標を参照しながら、データ群にどのような特徴があるのかを判断したいと思います。そして、分析の目的に立ち返り、適切な分析手法やグラフの選択を通して、より正確な業務遂行を目指します。

リーダーシップ・キャリアビジョン入門

夢と目的で拓くリーダー像

本当のリーダーって何? これまで、特定の人物のリーダー像を描いた書籍などから理想のリーダー像を想像し、方法論として捉えていました。しかし実際には、成功しているリーダーはまず目的を明示し、その目標に向かって関係者全体を最適にまとめ上げていることに気付かされました。方法論だけでなく、マインドセット的要素が非常に重要であると実感しています。 部下の夢はどう伝える? 今後は、国内の部下育成と4月以降の海外での部下育成に、この考え方を実践的に投入していこうと思います。現状のポジションでは、個々の方法論を細かく指導するには限界があるため、大きな方向性―あるべき姿や夢―を伝える形で、目的そのものが推進力となるようにスタイルを変えていくつもりです。 次の一歩はどう実行? 具体的には、国内では来週行われる部会や次期フィードバック面談の場で、海外では4月中旬の赴任先での所信表明演説において、自分が思い描くあるべき姿や実現したい事(夢)を、自分の言葉で明確に示していく予定です。

データ・アナリティクス入門

具体を引き出す対話の魔法

目的をどう明確化? 分析の目的を明確にすることの重要性を実感しました。データを活用する相手がどのような目的で情報を求めているのか、コミュニケーションを通して具体的に確認する必要があります。しかし、実際に会話をすると、目的が漠然としていたり、具体的な内容が伝えられないケースが多く見受けられました。そのため、抽象的な要素を具体的な内容として引き出すヒアリング力が非常に重要だと感じています。この過程で、仮説設定や比較対象の選定がより明確になり、全体の分析基準がしっかりと定まると考えます。 営業データは何を示す? また、営業活動においては、提供するデータがますます重要になっています。特に、自社製品の導入理由を明確に説明することが求められる中、競合他社との比較において自社製品を選ぶ根拠を明確なデータで示すことが必要です。営業と意見を共有しながら、データ活用の目的を具体的に明確化し、客観的な視点を保った説得力のあるデータ提供を行うことで、導入率の向上につなげたいと考えています。

データ・アナリティクス入門

小さな一歩から見える大きな未来

目的と対象は? データ分析を行う際は、まず対象を明確にし、何を比較するのか、どのような目的で分析を進めるのかをはっきりさせることが大切です。やみくもに作業を進めるのではなく、解決すべき問題を洗い出し、最終的にどのようなアウトプットを目指すのかを事前にイメージしておく必要があります。 計画の進め方は? 初めは大まかな分析から始め、そこから徐々に細部にわたる分析へと進めていくと、全体像を捉えながらも、必要な部分に着眼できるため効果的です。データの収集や加工の前に、分析のロードマップを描いて進めると、全体の流れが整理され、分析結果の精度向上につながります。 他部署での連携は? 他部署と共同でデータ分析を実施する場合は、問題点やアウトプットのイメージについて十分なコミュニケーションを取り、上流工程での認識合わせを中心に進めることが重要です。また、学んだ各種のフレームワークやグラフの表現方法を意識的に活用することで、知識の定着や成果の説得力を高める努力をしています。

データ・アナリティクス入門

比較が教える新たな発見

分析の視点は正しい? 分析を行う際、「分析は比較なり」という視点を常に意識することが大切だと感じました。まず、分析の目的を正確に把握し、提示先の求める結果と意識を合わせることの重要性を学びました。また、比較する目的に沿って適切な軸を設定する必要性も再認識しました。 意見交換はどう進む? また、さまざまな業界の方々のご意見を聞くことができ、グループワークでは意見交換が活発に行われ、非常に助かりました。 データの意味は十分? 私はIT業界で、顧客向けのデータ分析やBIツールの活用を行うことが多いため、依頼内容をただ見える化するのではなく、分析の目的をしっかり意識し、データの意味を考えた上で最適なグラフを選択する必要性を感じました。そのため、データの格納方法や保持方法を含めたトータルな提案力を高めたいと考えています。 業界課題はどう見る? さらに、さまざまな業界が抱える課題や、それぞれがどのようにデータ分析を実施しているのかについても非常に興味深く感じました。

「目的」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right