データ・アナリティクス入門

あなたも解決者に!ナノ単科で学ぶヒント

問題解決フレームは? アンドリューが経営する音楽スクールのB校を題材に、問題解決のフレームワークについて考えることができました。問題解決は「What(何が問題か)」「Where(問題はどこで起きているか)」「Why(なぜ起きているのか)」「How(どう解決するか)」の4段階で進めるのがポイントとなります。 赤字経営の理由は? まず、Whatですが、B校の本質的な問題は、計画上は年間黒字を見込んでいたにもかかわらず赤字経営に陥っている点です。計画では年間黒字2,250千円が予想されていたのに対し、実際には5,150千円の赤字となり、経営の持続性が問われる状況です。 どこで問題発生? 次にWhereです。ロジックツリーを用いて問題を層別分解することで、原因が「生徒数の減少」と「費用の増加」という大きな観点に分けられることが見えてきます。生徒数減少については、ターゲット設定の不適切、広告・販促の効果不足、立地やアクセスの不利などが考えられ、具体的には地域特性を無視した集客戦略や講座の魅力訴求が不足していることが挙げられます。一方、費用増加に関しては、イベント開催費の計画超過、講師人件費の増加、稼働クラス数の減少による単価上昇などが要因として考えられます。 数字で見る実態は? さらに、変数分解では売上と費用を数値的に捉え、売上は「生徒数×単価」、費用は「固定費+変動費」と整理できます。計画との差異から、生徒数は計画の100人に対し実績は60人と大幅に下回り、イベント開催費や講師人件費の増加が費用超過の主因であると考えられます。 MECEって何? また、MECE(Mutually Exclusive, Collectively Exhaustive)の考え方にも注目しました。これは、物事を漏れなく重複なく切り分けることで、特に生徒属性の分析において「年齢」「職業」「経験」「通学距離」「入校動機」などの切り口が有効であると学びました。 知見を活かすには? この知見を踏まえ、Week1で自身の仕事であるマナー講師養成講座の販売促進に応用するため、以下のように整理しました。 なぜ受講者が伸びない? まず、Whatとして、受講者数の伸び悩みとターゲットへの認知不足が課題です。次に、Whereとして、ロジックツリーによる層別分解で、受講者数が伸びない原因を「ターゲティングの不明確さ」「広報・販促手法の効果不足」「商品自体の伝わり方の問題」に分類しました。具体的には、対象層が曖昧であったり、各チャネルの効果が検証できていないこと、さらにはカリキュラムや修了後の活用イメージが十分に伝わっていないことが挙げられます。 なぜ提案が足りない? Whyについては、顧客の属性や行動データが十分に収集・分析されず、地域別・職種別のニーズに応じた提案ができていないことが原因です。また、広告費や営業活動が感覚的に運用されている点も問題と捉えました。 どう解決策を見出す? 最後にHowとして、以下の解決策を提示します。まず、受講者データの属性分析を行い、年齢、職種、地域、受講動機などで顧客像の「見える化」を図ります。次に、ターゲットごとに訴求ポイントを整理し、例えば教職員向けには「学校教育に役立つ資格」、主婦層向けには「家庭と両立できる副業としての活用」、企業人事向けには「社員研修の内製化への貢献」を訴求します。 効果検証は進んでる? さらに、LPやチラシを用いた簡易なテストマーケティングを実施し、広告手法の効果検証を行います。併せて、導入校や協力企業とのネットワークを活かしたリファラル紹介制度や、メルマガ・LINEによる情報発信、オンラインの無料相談や体験講座など、申込につながる接点づくりも強化します。最後に、販促効果や費用対効果を定量的に記録し、次期キャンペーンやイベントの改善につなげる仕組みの構築を目指します。 計画は成功に繋がる? このアクションプランを実行することで、問題を構造的に捉え、具体的な改善策を計画的に推進できると考えています。

クリティカルシンキング入門

問いでひらく成長の扉

どんな問いが力になる? 「問いの立て方」を通じて、物事の見方や考え方がどれほど深まるかを実感しました。単に与えられた情報を処理するのではなく、どのような構造で考え、どの問いを起点にするかによって、新たな気づきや適切な打ち手が導かれる点について、改めて整理することができました。 データは何を示す? 特に、観光客数の月別データと目的別データを用いた総合演習は、自分の学びを定着させる絶好の機会となりました。一見、繁忙期や閑散期といった単純な数字も、「目的別」や「季節別」といった切り口を用いることで、たとえば「冬は観光客が少ないが、癒しを求める割合が高い」という特徴が明確になり、それに基づいた打ち手が考えられることに気づきました。 切り口変える理由は? また、実務の現場では、新規事業の仮説検証の際に、最初に目にする顧客データを単に属性別に見るだけではなかなかヒントを得られません。しかし、「購入理由」や「導入経路」、「利用される状況」といった視点で切り口を変えると、急に有用な示唆が得られることを、これまでの実践でも何度も確認してきました。分類の軸を変えるだけで全体像の意味合いや優先順位が変わり、この体験は非常に印象深いものです。 なぜ思考は有効? 今回の学びの価値は、これまでの実務経験とも結びつけながら、「なぜこの思考プロセスが有効なのか」「どこに再現性があるのか」を自分なりに言語化できた点にあります。問いの立て方を、個人の思考にとどまらず、チームやクライアントとの合意形成に活用するための再現可能な手法として捉えることができるようになりました。 何のために問う? さらに、「本質的な問い」とは何かを求める中で、その問いがどの目的に接続しているのか、すなわち「何のためにそれを問うのか」という視点の大切さにも気づきました。問題の背後や上位にある目的を意識すれば、問いそのものの価値が高まり、時間やリソースの限られた中でも本質に迫る打ち手にたどり着けると感じました。この「問いの意味構造を見る力」は、今後の実務においてさらに意識して鍛えていきたい視点です。 どこから始める? 私自身、クライアントとの対話や議論の場では、スライド資料だけでなく、構造化モデリングツールを用いて仮説や課題構造をリアルタイムに可視化する機会が多くあります。こうした場面では、「どこから構造を立ち上げるか」、すなわち「問いの立て方」が成功の鍵となります。問いがあいまいだと、浮かび上がる構造も不明確になり、議論の焦点が定まらなくなるため、今回の演習は思考習慣の向上に大いに役立ちました。 どう対話が始まる? また、「問いを立てる」という行為は、考えるための起点であるとともに、相手との対話を始める契機でもあると強く感じました。これまで「答えを出すこと」や「ロジックの整理」に注力してきましたが、クライアントやチームメンバーとの協働においては、「なぜそれを議論するのか」や「何が明らかになれば次に進めるのか」といった問いかけが、時に大きな価値を持つことを実感しています。 どんな問いが導く? 今後は、コンサルティング方針やワークショップの設計においても、「どんな問いを置くと相手の考えを引き出せるか」「情報提示の背後にある目的は何か」といった点を意識し、単なる情報伝達にとどまらない対話の起点を構築していきたいと思います。問いの精度と設計力を高めることが、実務における支援の質や成果に直結すると確信しています。 問いが成す未来は? 今回の学びは、自分がこれまで積み重ねてきた経験と結びついており、問いを立てる力がコンサルティングの根幹を成す重要なスキルであると再認識する機会となりました。今後も、問いを通じた思考と対話を積極的に実践することで、より本質に迫る支援の実現を目指していきたいと考えています。

クリティカルシンキング入門

問いと構造で開く新たな気づき

どうして思考が進化? これまで「仕事の質は思考の質」という信念のもと、デザイン思考やクリティカルシンキングを学んできましたが、今回、構造化思考に基づく「モデリングによる可視化」の視点を取り入れることで、思考の深さと広がりが一段と増したと実感しています。 連動の仕組みは? 「問いを立てる」「構造で捉える」「全体像と要素を行き来する」というプロセスは、各々のスキルとして独立しているのではなく、互いに連動して初めて真に整理された思考につながると感じました。システムモデリングを活用することで、複雑な課題や状況を構造的に可視化できるだけでなく、「なぜそうなっているのか」「どこに本質的なズレがあるのか」というクリティカルな問いを支える土台が形成され、対話や資料作成における表現の精度や説得力が明確に向上したことが印象的でした。 聞き方はどう変わる? 現場でのヒアリングや議論においては、単に情報を受け取るのではなく、頭の中に構造モデルを描きながら話を聞くことで、問いの立て方が変わり、見えてくる情報の質も高まることを実感しています。こうした思考の流れを意識することで、相手の論点や曖昧な仮説も整理し、共通の理解を形成する助けとなっています。 学びの効果は? 今回の学びは、事業や組織の開発における構想フェーズ、すなわち対話や構想の整理、共通理解の形成に非常に有効であると感じました。新規事業の企画段階では、単にアイディアを列挙するのではなく、背後にあるニーズや構造的な背景に目を向け、因果関係や前提構造を可視化することで、抽象的な着想を現実的な構想へと橋渡しする力が求められます。 合意の仕組みは? また、組織開発の現場では、関係者間で異なる立場や視点が対話を困難にすることが多いですが、モデリングを通して共通の構造や相互理解の枠組みを示すことで、合意形成がスムーズになりました。抽象度の高いビジョンづくりや課題整理のワークショップにおいて、全体構造と個々の要素を行き来するプロセスは、議論の接続点を明確にし、実践的なナビゲーションとしての役割を果たしています。 問いが導く方法は? 今後は、論点整理の初期段階において「問いを起点に全体構造を描く」姿勢を習慣化し、実際の対話や企画立案の場面でモデリングを活用していきたいと考えています。具体的には、企画会議や構想段階のディスカッションで、まず本質的な問いを明確にし、それに沿って情報や仮説を構造的に整理していくことが重要です。さらに、コンテキストモデルや因果ループ図などを用いて思考の流れや対象の構造を可視化し、相手との認識の違いを明確にしながら議論を進めることで、建設的な対話と提案につなげたいと思います。 なぜ振り返ればいい? また、定期的な振り返りを行い、「問いの立て方」「構造化の質」「モデルの解像度」といった観点から自分の思考プロセスを見直すことで、見落としていた視点や過度な単純化に気づく機会を増やしたいと考えています。その経験をチーム内で共有することで、互いに思考を磨き合い、より高い解像度の意思決定と支援を実現していけると信じています。 モデリングの真髄は? このように、モデリングによる可視化のアプローチは、思考を組織的な資産として扱い、再現性のあるスキルへと進化させるための実践的な手法です。今後も実務の各フェーズでこの手法を取り入れることで、より本質的で説得力のあるプロセスを追求していきたいと思います。

データ・アナリティクス入門

問題解決の力を引き出すステップ学び

問題解決の基礎ステップとは? 問題解決のプロセスとして「What」「Where」「Why」「How」のステップがあることを学びました。 最初のステップである「What:問題の特定」では、定量情報を用いて"あるべき姿"と"現状"を比較し、"ギャップ"を明らかにすることが肝要です。このステップを思いつきや決め打ち、闇雲に行うと、以降の工程が無駄になるリスクがあります。 ロジックツリーの活用法は? 次のステップである「Where:問題箇所の絞り込み」では、「What」のステップで特定した問題を起点として、ロジックツリーというフレームワークを用いてMECEに要素を分解します。全体を俯瞰し、問題に対する影響度から見るべき範囲と見なくてもよい範囲を絞り込み、分析の優先順位を決めることが重要です。ここでも思いつきや決め打ち、闇雲に取り組まないことが大切です。 経営資源は有限であるため、短期的な観点ではそれらを前提や制約条件として考慮し、「What」や「Where」のステップを効率的に進めることができます。ただし、経営資源は変化するものであり、中長期の視点で見る際には前提や制約条件として考慮すると網羅性に欠け、全体像を把握できなくなるリスクがあります。 また、「What」「Where」のいずれのステップにおいても、複数の切り口を持ち、複数の仮説を立ててデータにあたることが重要です。切り口の感度や仮説の筋の良さが問題解決の精度に影響を及ぼしますが、これは「どれだけ現場のことを理解しているか」と「どれだけ高い視座と広い視野を持てるか」に依存すると感じました。 問題解決に活かすために これまでの自分の問題解決のアプローチは短期的かつ思いつきや決め打ちが多く、時間的制約という思い込みの中で深く考えることができていなかったと気付きました。これでは、切り口の感度や仮説の筋の良さが磨かれるはずもありません。 次期中期事業計画の策定時に今回の学びを活かします。現中計の振り返りをふまえて次期中計を策定する際、より良い未来に向けて「なぜその目標を設定するのか」「なぜそれを独自性(強み)と考えたのか」「なぜそれをやる or やらないと考えたのか」「現経営資源を考慮した際、なぜその方針が妥当なのか」を分析結果を用いて説得力を持たせたいと考えます。「目指すべき目標を明確にする」「独自性(強み)を認識する」「やることとやらないことを区別する」「目標への道のりの妥当性を示す」、そして戦略の構造化を図る。 関係者との協力をどのように? 周囲の協力を得つつ、関係者と一緒に「高い視座と広い視野」を持ち、三現主義の考え方に基づいて、目的に適したフレームワークを使いながら、一つ一つしっかりと考え進めていきたいと思います。そのために、今まで以上に上位層や組織の枠を超えたコミュニケーションを増やし、今回学んだロジックツリーを戦略の構造化で使うべく、日々の業務で活用し自分のものとしていきたいと思います。 上位層との1on1を通して「高い視座と広い視野」を獲得し、メンバーとの1on1では問題解決のプロセスを意識し、ロジックツリーの利用を促進し「全員が使えるフレームワーク」として根付かせていきます。

デザイン思考入門

観察と共感でひらく新発見

調査ログの見直しは? 今週、育児期間中の30~40代を対象に実施した過去のインタビュー調査ログを見直す作業を行いました。コーディングを意識しながら作業する中で、改めて一次データの重要性を実感しました。 抽出視点の違いは? ログから課題やニーズにつながる事象や行動を抽出する作業は、人の目に依存するため、抽出の視点が人によって異なりやすいと感じました。動画内でも経験が強調されていましたが、バイアスが働くと必要な情報に気付かなくなる可能性があるため、情報を絞りすぎると大切な観点を見落としてしまいそうだと危惧しました。 共感の重要性は? デザイン思考の最初のステップである「共感」では、ユーザーの見えない課題やニーズを発見するために、観察、体験、インタビューを繰り返すことが重要です。インタビューでは、観察で気になった行動の背景を心理面から深掘りし、共感を得られるように課題やニーズを言語化します。こうして得た情報をテキスト化し、コーディング分析を行うことで、単なる観察だけでは浮かび上がらない本質的な課題や行動を明らかにすることができます。 行動の理由を探る? 実際、観察や体験で注目した行動をインタビューで詳しく聞くことで、ユーザーが無意識に行っている当たり前の行動の理由を解明するプロセスの重要性を実感しました。課題を抽出する際は、互いの思い込みや認識の差が生じやすいため、情報共有を通じて共通認識を合わせることが求められます。しかし、立場や利害関係が異なる中で何を重視すべきかを調整するのは容易ではなく、うまく進む場合とそうでない場合があると感じました。 定性調査の有用性は? WEEK-3で学んだ定性調査は、新しい領域や馴染みのない状況で仮説を構築する際に有効な手法だと感じています。定量データだけでは掴めないユーザーの姿勢や心理を探るのに、インタビュー、フィールドリサーチ、ログ(日記)などの手法が効果的です。実際、観察を通じてユーザーが意識していない行動や癖から気付かないニーズや課題にアプローチできることもあります。 仮説構築の進め方は? 定性調査では、まずインタビューやフィールド調査で得た情報を整理し、要点となる事象や課題を抽出します。その後、抽出した要素をカテゴリー分けして情報を圧縮し、最小限の要素にまとめた上で、フレームワークやプロセスの形に図式化・構造化することで仮説モデルを作成します。 ヒアリングの工夫ポイントは? また、インタビューの際にヒアリング項目を整理したシートを事前に作成し、記入してもらってから話を聞く方法も有効だと感じました。ただし、記入式では重要な点が十分に言語化されない場合があるため、まずは日常の業務や業務フローなど現状を把握することから始める工夫が必要です。ヒアリングが雑談になり、課題に焦点が定まらなくなる場合は、ジョブ理論を参考にするのも一案です。実際、グループワークでフォームの改善に取り組んだ参加者の話では、ユーザーが入力の手間を感じないようにするため、従来の枠にとらわれない解決策が模索され、その柔軟な発想が印象的でした。

データ・アナリティクス入門

数字が紡ぐ学びの物語

データ活用はどう考える? WEEK3では、データを単なる数字としてではなく、「意味のある情報」として活用するための基本的な考え方や手法について学びました。まず、データ分析の際には、数字に集約して捉える、目で見て確認する、数式で関係性を読み取るという三つの視点が重要だと理解しました。たとえば、数値の代表値である平均値を用い、分布のばらつきを標準偏差で把握することで、全体の傾向をより具体的に捉えることが可能になります。標準偏差が大きい場合はデータのばらつきが大きく、逆に小さい場合は値が一定の範囲にまとまっていると判断できます。これによって、単なる「平均気温」といった情報でも、過去のデータと比較することで、その年の気温の位置付けを明確にすることができます。 ビジュアル化は有効? さらに、ヒストグラムなどを用いたビジュアル化は、視覚的にデータの分布や外れ値を確認できるため、特定の年齢層の傾向や想定とのずれを一目で把握可能にします。こうしたプロセスは、単にデータを集約するだけでなく、見込み客の把握や最適な施策構築といった、戦略的な意思決定を支える重要なツールとなると感じました。 受講者像の把握は? この考え方を、受講者促進活動に当てはめると、まずは代表値や分布を用いて受講者の像を明確にし、年齢や職業、居住地域、受講目的などの項目ごとに「どの層に集中しているか」や「どの程度幅広い対象にリーチしているのか」を分析する必要があります。たとえば、平均値から中心となる層を把握し、標準偏差で広がりを捉えることで「特定の年代に偏っているのか」「幅広い年代に支持があるのか」が明らかになります。 グラフで見える傾向は? また、ヒストグラムを活用することで、受講目的やニーズの傾向を視覚的に判断でき、たとえば広告文面の最適化や広報素材のデザイン、ターゲット層の絞り込みに役立ちます。同様に、地域ごとのデータもマッピングして、申込数や反応率の地域差を明確にし、重点的な営業エリアの選定につなげることができます。さらに、各施策の反応率を数値化し、平均値と標準偏差を基に比較することで、PDCAサイクルを効率的に回し、より効果的な改善策が講じられると感じました。 具体策はどう実行? 具体的なアクションプランとしては、まず過去数年間の受講者リストから「年齢」「性別」「職業」「居住地」「受講目的」などをExcelに整理し、各項目の平均値や最頻値、標準偏差を算出してデータの集約と構造化を図ります。次に、ヒストグラムや円グラフを用いて年齢や職業、地域ごとの分布を可視化し、そこから抜け落ちているターゲット層や成功しているエリアを確認します。そして、特定のターゲット層を仮説として立て、その層に合わせた広報や導線の設計を行います。加えて、各施策の反応率を記録し、基準となる数値を通じて比較分析を行い、最後に数値とビジュアル化されたデータをもとに定期的な振り返りを実施することで、感覚ではなく具体的な数字に基づいた意思決定を徹底していくことが求められます。

クリティカルシンキング入門

クリティカルシンキングで仕事の質を劇的向上

クリティカルシンキングとは何か? クリティカルシンキングとは、仕事の流れ(他者との議論、企画立案、資料作成、プレゼン、他者への説明・依頼)において最も重要な要素です。物事を前に進めるために、その時点で解くべき問い(イシュー)を立て、それを適切な方法で、適切なレベルまで考えることが鍵です。これにより、新たな発想や機会・脅威の発見、他者との生産的な議論と意思決定が可能になります。 クリティカルシンキングの3つの重点ポイント クリティカルシンキングの重点ポイントは次の3点です。 1. **三つの視** - 視点、視野、視座 2. **思考の構造化** - 分解:時間軸、5W1H、3Cなどの代表的なフレームワークを使用し、縦・横・深さを可能な限り分解する。 - 結論、その結論を支える根拠、それを支えるファクト(ピラミッドストラクチャーを活用した視覚化とチェック) 3. **相手を動かす資料作り** - 資料の目的と手段の整理:誰を、どう動かすためか? - 相手の視点や認識と思考のクセを理解し、資料の「お作法」を守る(情報配置や視点の動きなど) 未経験業界の課題抽出には? 未経験の業界の仕事に向けて、最終ゴールとKPIの情報を基に、KPI達成に向けた課題と対策(仮説)をクリティカルシンキングを用いて抽出・立案します。ポイントは、KPIを5W1Hや3Cで分解し、その後時間軸や三つの視の観点でさらに細かく分解できないか検討すること、そして「誰でも手を動かすだけでできる」レベルのDOまで具体化することです。また、それぞれの分解ステップでMECE(Mutually Exclusive, Collectively Exhaustive)になっているか確認し、ピラミッドストラクチャーで構成を視覚化し、「SO WHAT」「SO WHY」でロジックを確認します。 資料作成でのクリティカルシンキング活用法 日常業務における資料作成の場面では、以下の2点を資料の冒頭に記載し、クリティカルシンキングの定着を図ります。 1. **ピラミッドストラクチャー** - 資料のストーリーを「結論-理由-理由を支えるファクト」の繋がりとして視覚化し、「SO WHAT」「SO WHY」でロジックを確認する。 2. **プレゼン対象とその対象に求める行動** - 資料の内容をもとに、プレゼン対象が求める行動を取るかどうか、その理由まで視覚化する。 資料品質向上の具体策は? 資料品質の向上にも徹底的に拘ります。タイトル・リード・ボディの関係性の統一、各ページの情報の位置と意味合いの統一、図形・グラフの正しい活用法などが重要です。また、タイトルとリードのみで伝え切る工夫(言葉の断捨離、研ぎ澄まし)も大切です。 生産性向上のための議論ルールとは? 議論の生産性を高めるためには、問いの視覚化、結論-根拠-ファクトの順に話すルールの設定、互いのフィードバックが求められます。

データ・アナリティクス入門

データに秘めた学びのヒント

数値とグラフの違いは? 今週は、データ比較のアプローチとして、数値に集約する方法とグラフ化して視覚的に捉える方法の両面から学びました。数値に集約する際は、代表値として単純平均を用いることが多いですが、外れ値が混ざると平均値が影響を受けやすいため、その場合は標準偏差を活用してデータのバラつきを確認します。ヒストグラムを用いることで、グラフから傾向を読み取り、背景を推察する仮説思考の大切さも実感しました。 データばらつきの見方は? 標準偏差は分散の平方根であり、自然現象のバラつきが正規分布(釣鐘型)に従う場合、2SDルールで求めることができます。ただし、ピークが複数あるヒストグラムでは正規分布とならない点には注意が必要です。 成長率の計算は? また、成長率などの変化を計算する場合は、各年度の成長率を掛け合わせた数値のn乗根で算出される幾何平均を用います。複数のデータの平均を求める際、外れ値の影響がある場合は単純平均ではなく中央値を用いる方法も取り入れています。 散布図の意義は? 要素が2つの場合、散布図を用いて数値の関係性を視覚化し、相関係数によりその関係を数値化します。相関関係を直線で表現するために単回帰分析を適用し、相関係数はR、決定係数はR²として示されます。決定係数は、散らばりの何%が横軸の要因で説明できるかを示しますが、相関が必ずしも因果関係を意味しないことを改めて認識しました。 フェルミ推定を使う? さらに、データ収集の前に成果をもたらす要因を構造化するため、フェルミ推定を活用して方程式を作るモデル化にも取り組みました。フェルミ推定は、売上を上げる施策の検討にも用いられ、多角的に捉えてアクションに結びつける手法として有用だと感じました。たとえば、薬局の売上伸長を検討する際に売上を分解し、複数の施策を検討することで、利益の方程式と組み合わせてより分かりやすい説明が可能になると感じています。 相関と因果の違いは? また、気温とビールの相関性の事例を通して、これまで取り入れてこなかった相関性の視点を業務に役立てたいと考えました。具体的には、患者の平均待ち時間と減少率、在庫品目数と医薬品廃棄率、管理者への研修時間と理解度テストの結果など、さまざまな原因と結果の関係を散布図にして検証することで、業務改善につなげる手法を学びました。なお、常に相関と因果は一致しない点を念頭に置いて取り扱う必要があります。 適切なグラフ選びは? 最後に、これまでなんとなく選んでいた棒グラフや折れ線グラフに代えて、根拠を持って適切なグラフや散布図を選択する重要性を再認識しました。売上アップのための各施策を列挙し、売上と施策の関係を散布図で表すとともに、グラフの縦軸のメモリを工夫して読みやすさを追求します。その上で、相関係数や決定係数を算出し、どの施策が最も効果的だったかを分析し、上司や部下、部内と情報を共有していきたいと考えています。

データ・アナリティクス入門

仮説で切り拓く思考と成長の道

仮説はどう捉える? 仮説は論点に対する仮の答えであり、そこから検証や分析を進める出発点といえます。仮説には「結論の仮説」と「問題解決の仮説」という2種類があり、前者は最終的な結論の方向性を先に立て、そこから逆算して必要な情報を集めて検証を進めるものです。一方、後者は起きている問題に対して「なぜそうなっているのか」「どうすれば改善できるか」を探るプロセスであり、What、Where、Why、Howといった問題解決の手法を意識して仮説を立てます。 仮説はどう整理? これまでは仮説を一括りで捉えていましたが、今後はどちらのタイプの仮説に取り組んでいるのかを明確に意識して使い分けたいと感じています。また、複数の仮説を立てることで決め打ちを避け、柔軟な視点を保つことができます。加えて、仮説同士の網羅性を意識し、カテゴリやプロセスといった異なる切り口からの検討は、より構造的なアプローチにつながります。こうした取り組みが、課題設定力の向上にも寄与すると考えています。 どんな経験が役立つ? これまでの業務経験では、「結論の仮説」と「問題解決の仮説」の両方に取り組む機会がありました。特に施策の立案など、結論を先に想定する場面ではフレームや構造を活用し、全体像を俯瞰したうえで結論から逆算して仮説を立てることが効果的だと感じています。一方、日々の業務でデータを確認し、問題を発見・提示する機会が増える中、What/Where/Why/Howのプロセスを意識した仮説立案が、原因特定から改善策の検討までの一連の流れを円滑に進める助けとなっています。 仮説の質はどう上がる? また、仮説の質を高めるためには、網羅性を意識しながらさまざまな切り口で検討する姿勢が重要です。この取り組みを通じて、本質的な課題設定ができ、より実効性のある打ち手へとつなげることができると実感しています。 学習の効果は何? 今回の学習を通して、「結論の仮説」と「問題解決の仮説」という2種類の仮説が存在することを再認識しました。振り返ると、私は「こうすればうまくいく」という結論の仮説に対してやや苦手意識を持っていたと気づきました。 今後の改善はどう? そこで今後は、まずフレームワークを活用して構造的に考えることに努めます。要素分解を通じて仮説を立てやすくし、思考に型を取り入れることで苦手な結論型の仮説も導き出しやすくする狙いです。また、間違ってもよいという前提で自分なりの仮説を積極的に立てることで、完璧を求めず「とりあえずの仮置き」を実践し、言い切る練習を重ねつつ検証を前提とした思考に慣れていきます。さらに、学んだ知識をそのまま受け入れるのではなく、自身の業務や経験に照らして問い直し、アウトプットや振り返りを通じて知識を深め、実際に使える形に育てる努力を続ける所存です。

戦略思考入門

業務改善への学びを深める新たな視点

複雑性の原因は? 現在、私の所属する会社では、複数の事業が並立し、複雑化しています。この状況を「範囲の不経済」として再認識する機会となりました。新規事業を立ち上げるにあたって、社内資源を最大限に活用しようと心掛けていましたが、それがかえって事業の複雑性を増す原因になっていたように感じます。今後は、「既存ビジネスとの資源の共通部分が本当に強みを生むのか」を再度考える必要があると感じています。 業務思考の向上は? 総合演習を通じて、普段の業務に当てはめて考えることのできる観点を学びましたが、実際には業務中に立ち止まって考える余裕が足りませんでした。今後は、自分自身で立ち止まり、思考を深めるべきポイントを明確にすることから始めたいと思います。また、演習時に思い付きで意見を列挙した場合と、フレームワークを活用して検討した場合とでは、回答の整理や網羅性に大きな違いがありました。この違いは業務にも大きく影響するため、情報の整理や思考を深めることを習慣化したいと考えています。 部門調整はどう? また、現在は事業が多様化しており、範囲の不経済が生じている状況です。業務においては、本部間の調整や組織の運営に対処する必要があります。これに対し、まずは個々の本部の意向を一旦脇に置き、会社全体のあるべき姿を客観的に見据えて、他部門との対話や調整を進めていきたいと思います。 ターゲット明確化は? 演習を通じて、ターゲットの明確化が不可欠であることを改めて認識しました。現在、事業全体で共通のターゲット像が描けていないことが課題です。これまでこの問題に対して提言できずにいましたが、学習によって外部環境や内部環境の整理が不足していたことが原因であると理解しました。今後は、行動計画に従って具体的な対策を講じたいと思います。 資源活用を見直す? まず、自部門に限らず他部門も含めたバリューチェーン分析やVRIO分析を行い、会社全体の構造と資源を再評価したいと考えています。これまでの「自社資源を何が何でも活用する」という考えを見直し、共通の資源が本当に強みとなるかを検討することで、真にシナジーが期待できる部分のみを利用するようにして、経済的な効果を生み出す状態を目指します. 議論で成長できる? 加えて、3C分析やSWOT分析を用いて一切の漏れがないよう情報を整理し、ターゲットをどこに設定すべきか、自分の言葉で繰り返し言語化していきます。この学び全体を通じて、言語化の重要性とそれに伴う能力の鍛錬が必要であることに気づきました。したがって、今後のアウトプットについては、必ず上司や同僚と議論し、終わりではなく改善を繰り返す姿勢で取り組んでいきたいと思っています。

データ・アナリティクス入門

データ分析の失敗談から学ぶ成功法

データ分析における意思決定とは? ビジネスにおける意思決定において、データ分析は非常に重要な役割を果たします。数値を可視化することで先入観にとらわれずに合理的な判断が可能となります。また、比較の際には、条件を揃えた上での分析が重要です。目的を明確にすることで、何を明らかにしたいのかという背景を理解し、分析の効果を最大化することができます。 失敗をどう教訓に活かすか? 日々の業務ではこれらの点を意識してデータ分析を行っているつもりでしたが、振り返ってみるとできていないことも多く、過去には目的を明確にしないまま分析に臨んだ結果、時間を無駄にして失敗に終わった経験もあります。しかし、この失敗を教訓に、分析の依頼者に対して背景や目的を確認することで、効率的なデータ抽出と適切な要因分析ができ、最終的には施策の成功に貢献することができました。この経験を通じて、分析の初期段階で目的を明確にすることの重要性を再認識しました。 今後の分析に向けた意識改革 現在の分析経験はまだ少ないと感じており、依頼されたものだけでなく自ら事業の課題に対してデータ分析を行い、積極的に提案していきたいと考えています。ウェブサイトの行動履歴ログを基にした流入、離脱、コンバージョンの分析を通じて、カスタマーの動きを把握し、学んだ知識を活かす場面は増えそうです。 依頼者とのコミュニケーションの重要性 過去には依頼者とのコミュニケーション不足で目的が不明確なまま進め、失敗した経験もありました。今後は、何を明らかにするための分析なのかを明確にし、依頼者と密にコミュニケーションを図ることで認識のすり合わせを心掛けます。また、データ抽出の間違いで時間を無駄にした経験から、目的達成のために必要な情報を収集し続ける努力を欠かさないようにします。さらに、分析結果を言語化する際には、簡潔かつ構造的にまとめることを目指します。 スキルの向上と今後の展望 これからは、データ分析に必要な情報を依頼者とのコミュニケーションを通じて収集し、過去の失敗や学んだ知識を活かして、目的の明確化、仮説の設定、納期、データ抽出の定義など、依頼者とすり合わせを行い、認識の齟齬をなくすよう努めます。依頼者が求める分析の目的を見失わないように、すり合わせた内容を基にして、全体像を把握するデータ抽出から始めるつもりです。分析結果は言語化し、依頼者と密にコミュニケーションをとり、振り返りを行います。 学んだ知識をもとに行動を重ね、情報収集やデータ抽出方法のツール、プログラムの習得などのスキルを磨きつつ、事業の課題に対して正確なデータ分析レポートを提供できるよう努力を続けていきます。

データ・アナリティクス入門

データ分析の真髄に迫る学びの旅

データ分析の基本とは? まず初めに、データ分析の大前提として「データは分析し結論を導き出すための情報・数値であること」と「分析の本質は比較であること」が言語化されていたことが印象的でした。これにより、分析の目的や方法を再認識することができました。 目的を見失わないためには? 分析の目的を見失わないこと、目的を果たすために適切な仮説を立てることは重要です。しかし、実際には想定結果が出ず、焦ってデータ収集をやり直すことや、仮説が間違っていて最初からやり直すことが多々ありました。これは、深く考えることが不足しているからだと改めて気づきました。 効果的な比較対象の選定法 また、比較の対象を選定する際、分析する要素以外の条件を揃えることができていなかったように思います。さらに、分析結果をもとに意思決定を行うためには、どのようなデータをどう加工すると伝わりやすいかを理解することも欠かせません。データの種類に応じた加工法やグラフの見せ方ができていないケースが多く、自己満足に陥っていたと感じました。 第三者の知識をどう活かす? これからは、まず自らしっかり考え、第三者の知識や知見・知恵を借り、フィードバックを活かすことが重要であると再認識しました。 次期中期計画にどう活かす? 次期中期事業計画の策定時には、現状を振り返り、次期中期計画を「なぜその目標を設定するのか」「なぜそれを独自性(強み)と仮定したのか」「なぜそれをやる/やらないと仮定したのか」「現経営資源を踏まえた場合、なぜその方針が妥当なのか」と問うことで、分析結果を用いて説得力を持たせたいと考えています。「目指すべき目標を明確にする」「独自性(強み)を持ち自覚する」「やることとやらないことを峻別する」「目標までの道のりの妥当性を示す」これらを一つずつ丁寧に進めていくつもりです。 ゴールをどう明確にする? バランススコアカードを用いて現在の中期計画の問題点を再考し、新たなビジョンと戦略を立てるためにゴールを明確にし、その達成策を明示します。戦略マップを作り、戦略の構造化を図ることで、分かりやすいアクションプランを立てたいと考えます。データ分析に基づくことで、より良い意思決定ができると信じています。 初めての取り組みに挑むには? 初めての取り組みが多いですが、「自ら深く考える」「第三者の知識や知見・知恵を借りる」「フィードバックを活かす」ことを繰り返し、関係者全員にとって有益な中期計画にしていきたいと考えています。

「情報 × 構造」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right