データ・アナリティクス入門

学びとデータのワクワク発見

データ集約はどう行う? 今週は、データの見方を学びました。まず、データを数値に集約する方法として、代表値と散らばりの考え方を理解しました。代表値には平均、荷重平均、幾何平均、中央値などがあり、よく使われる平均値は外れ値に弱いことから、場合によっては中央値が用いられることもあると知りました。また、状況に応じて数値に重みを加える荷重平均や、売上の変化率などに使われる幾何平均がある点も印象的でした。 標準偏差の意味は? 次に、データの散らばりを示す標準偏差について学びました。標準偏差は、平均値からのばらつきを表し、その値が大きいとデータが広く散らばり、小さいと平均値近くに集まっていることを意味します。 分析方法をどう考える? さらに、集約されたデータを分析する際のアプローチについても考えました。一つは、特徴的な箇所に着目する方法、もう一つはデータ間の比較を通じて差異を見る方法です。いずれの方法でも、グラフを見る前に仮説を立て、そのギャップについて深掘りすることが、良い分析につながると感じました。 全体把握の重要性は? 最後に、仕事上でデータを扱う際、自分の仮説の確認だけに偏らず、まずは代表値やばらつきなどの基本的な数値を俯瞰し、対象のデータ群全体を把握することの大切さを再認識しました。その上で、加工されたデータを見ることで、より客観的かつストーリーとしてデータを理解できると考えています。

リーダーシップ・キャリアビジョン入門

キャリア・アンカーが拓く未来

キャリアの意味は? キャリアアンカーという概念とその意味を学び、自分自身のキャリアを持つことがメンバーのためにもなるという考えに深い印象を受けました。自らがキャリアビジョンをしっかりと持つことで、メンバーの悩みに寄り添い、彼らの人生をより良い方向へ導くきっかけを作れると感じています。また、会社や上司が部下の人生に影響を与える存在であるとの認識も新たにし、良いリーダーとなるべく今後も学びを重ねていきたいと思いました。 メンバーの目標は? 今後は、メンバーとの1on1の機会に、彼らがどのようなキャリアを描いているのか、またどのような目標を持っているのかを尋ねてみるつもりです。難しいテーマではありますが、明確にすることで得られる理解は大きいと考えています。自分自身もキャリアについて真剣に考え、その考えをメンバーと共有することで、彼らにも自分のキャリアについて考えるきっかけを提供したいと思います。 キャリア再評価は? これまで、会社員としての人生の終わりが見えてきたかのように感じ、キャリアについて深く考えることが少なかったのですが、改めて「キャリア・アンカー」や「キャリア・サバイバル」について学び直すことで、自身のキャリアを再評価しようと決意しました。残りの人生をより実りあるものにするためにも、学びを深め、得た知識をメンバーに伝えながら、彼らのキャリア形成に寄り添っていきたいと考えています。

戦略思考入門

多様な意見を取り入れつつ、自社の価値観を貫く方法

柔軟な思考をどう育む? 戦略を立てる上では、思考様式やツール(フレームワーク)の知識を基礎としながらも、多くの知識と他者の多様な考えに触れることで得られる柔軟な思考や発想が重要だという点が印象的でした。しかし、一方で、それらの多くの知識が逆に足かせとなったり、他者の考え方から悪影響を受けないように、自社の経営方針や価値観を判断の拠り所とすることも常に意識する必要があると感じました。 情報収集と分析のポイントは? 今週の学習内容とは少し異なりますが、事業計画の策定においては、できる限り多くの情報を収集し分析することが求められます。その際、「①自己の都合の良いように解釈したり、拡大解釈しない」ということと、情報や分析結果を基に戦略を立案する際に「②自社のMVV(ミッション・ビジョン・バリュー)との整合を取る」ということが重要だと思います。 まず、①については、自身の出した結論に対する論理を明文化して、他者に意見を求めるという流れを基本的なプロセスとして進めることが肝要です。 MVVと戦略の整合性を保つには? 次に、②については、MVVを日頃から目に触れる場所に掲示したり、作成するドキュメントに盛り込むことが有効です。また、レビューチェックシートにチェック項目として設けるのも良い方法かもしれません。これにより、常に自社の価値観や目標を意識した戦略策定が可能となります。

マーケティング入門

受講生が感じた顧客満足の魔法

マーケティングって何? 今回の学習を通じ、マーケティングという言葉は人によって捉え方に幅があり、その広がりを意識することの重要性を実感しました。マーケティングの基本的なサイクルとして、自社商品の魅力を正しく伝え、顧客にその魅力を感じてもらうことで行動変容(購入)に導くプロセスがあると理解しました。「顧客に買ってもらえるしくみ」というグロービスの定義は、顧客の立場に立ったマーケティングの考え方を示しており、非常に印象深く感じました。 セリングとの違いは? また、マーケティングとセリングの違いについて学びました。セリングは「売りたい商品」からスタートし、売上数量という成果に結びつくのに対し、マーケティングは「市場や顧客のニーズ」から出発し、顧客満足に基づく利益の創出を目指すという点が大きな違いです。この違いを理解することにより、常に顧客志向であることの重要性が一層明確になりました。 どうやって実践する? 今後は、販促施策の企画や検証の際にも顧客視点を軸に、顧客に選ばれる仕組みを意識していきたいと思います。また、アンケート結果を丁寧に分析し、その結果をもとにサービスやイベント運営に反映することで、より良い顧客体験の提供を目指します。さらに、日々の業務において住宅設備や住まいに関するトレンド情報も意識的にキャッチし、適切に活用していくことを心がけています。

データ・アナリティクス入門

プロセスが紡ぐ学びの軌跡

原因探索はどう? 問題の原因を探る際、プロセスに分けて考えることの重要性を実感しました。Week1で学んだ「分析は要素を分けて比較する」という手法を再確認し、今後も意識して取り組んでいきたいと思います。また、対概念について学ぶ中で「問題に関係する要素」と「それ以外」を区別するシンプルな考え方が非常に使いやすいと感じました。これまでに習ったフレームワークとも併せ、具体的な分析に活かしていきたいです。 判断基準はどう? さらに、「正解」が存在しない中で最適な案を選ぶには、適切な判断基準に基づいて評価するプロセスが不可欠であることが印象に残りました。精度を高める努力は必要ですが、時間をかけすぎないバランス感覚を持ちながら課題に取り組むことが大切だと考えています。 営業戦略考える? また、売上や利益を拡大していくために、What、Where、Why、Howを丁寧に検討し、効果的な営業施策を立案・実行する必要性を感じました。関係者に説得力のある行動計画を提示することで、より良い成果を得られるよう努めていきます。 多角的視点は? 一つのアイデアに固執せず、多角的な視点で物事を見ることも心がけたいです。正解のない状況でも、適切な判断基準を設定して効率的に進めることで、無駄な時間を省きながら最適な解決策にたどり着けると実感しました。

クリティカルシンキング入門

データが導く採用成功法則

いつデータは成果に? 十分なデータを蓄積することが、正確な現状把握と適切な問いの設定につながるという点が非常に印象的でした。日々あらゆるデータを収集し、いつ何に対して答えを出すべきかを意識することが問題解決の基本であると再認識しました。 ROI考慮の意義は? また、解決策を検討する際には、ただ増やすのではなく費用対効果(ROI)も十分に考慮すべきだという点も学びました。特定の業務を増やすことがオペレーションコストの増加や問題の複雑化につながることがあるため、必要に応じて削減する視点も取り入れることが大切だと感じます。さまざまな角度から分析することで、より有効な対策を講じる可能性が広がるとも思います。 採用戦略の真髄は? 私の会社では現在、採用活動の強化に取り組んでおります。今回学んだ内容は、採用数の増加に向けた戦略に役立つと感じました。例えば、時期別の応募者数を分析し、各流入経路の割合からボトルネックを明確にすることで、仮説に基づいた具体的な対策を講じ、採用数の向上を目指したいと考えています。 PDCAで何が変わる? この学びを整理した上で、抽象度の高い問題解決が求められる業務にも積極的に挑戦していきたいです。PDCAサイクルを何度も回すことで、立てる問いの質が向上し、より良い成果につながると信じています。

クリティカルシンキング入門

思考の偏りを超えて見つけた新たな視点

自由な発想を得るには? 講義で学んで感じたことは、自由な発想が経験や憶測によって無意識のうちに偏ってしまうことがあることです。また、常に考える自分とそれを批判する自分を持つことの重要性も学びました。さらに、三つの視点から物事を捉えることで、新しい発想や考え方が生まれてくることを実感しました。特に印象深かったのは、物事を進める際にまず軸を決め、その軸に基づいて徹底的に考えることです。これら四つのポイントは、即座に実践できるものであるため、意識的に取り入れ自分のものにしていきたいと思います。 考え方を多角的に見るには? 従来の私は物事を自分の考えたい方向に引っ張られていることが多かったのですが、講義を通じてもう一歩踏み込み、「本当にこの考えは正しいのか」と多角的に捉えるようになりました。この習慣をつけることで、顧客目線やスタッフ目線で考え、より良いサービスや福利厚生を提供していくことができると感じています。 物事の優先順位はどう決める? 物事を多角的に捉えるためには、その物事に対して何が軸なのかを考え、細かく分解していくことが重要です。分解が終わったら、その物事に対して何を優先すべきなのかを順位づけし、一つずつこなしていきます。さらに、他のスタッフからの意見を聞き入れ、自分の思考の偏りを理解し、擦り合わせていきます。

戦略思考入門

捨てる決断で見える未来

捨てる選択の価値は? 捨てる選択が顧客の利便性を向上させる点や、惰性で物事を進めないこと、さらには専門家に任せる判断も時には必要だという視点は、とても印象深かったです。また、定量的な指標だけでなく、数字では表しきれない顧客との関係性などの判断基準も併せ持つことで、より良い「捨てる」選択ができると感じました。さらに、トレードオフが発生する要因として、資源の制約(人・もの・お金)と、相反する性質を持つ要素(例:筋力とスピード)の両面が影響していることに新たな学びを得ました。 数字だけで判断できる? 一方で、定量的な指標だけで判断が難しい業務においては、組織に与えるインパクトを示す基準(影響を受ける人数、エンゲージメント、理解度など)を設け、時間の制約がある中で優先順位を決める際に活用することが重要だと感じました。たとえば、営業活動では顧客にとっての売上や利益、自社商品のパフォーマンス、そして時間あたりの生産性などを考慮し、何を実施し、何を見送るべきかを判断する手助けとなるでしょう。今年度の業務においても、組織に与える影響度(影響を受ける人数や影響の持続性など)の観点から整理し、雑務的な作業が惰性によるものになっていないか、また新たな取り組みを始める際には既存の何かを削減するという視点も持って活動していきたいと考えています。

リーダーシップ・キャリアビジョン入門

寄り添いと共感で育む1on1の軌跡

面談の目的は? 面談などを行う際は、まず目的を明確にし、面談後に相手をどのような状態に導きたいかをしっかり設計してから進めることが大切です。 共感は伝わってる? 具体的な事実を伝えることも重要ですが、まずは相手の苦労に共感し、寄り添う姿勢を示すことで、相手に良い印象を与えます。その上で、相手のやる気を引き出し成長を促すとともに、具体的な事実を納得感のある方法で伝え、振り返りを促す問いを投げかけながら、一緒に改善に取り組むアプローチが求められます。 1on1で成果感じる? 例えば、定期的に行っている1on1ミーティングや達成度報告会での振り返りでは、まず指導しているメンバー全員の状況をしっかり把握し、各自が自分で考え行動できる自立性を促すとともに、共感を得られている安心感や事実に基づく納得感を作り上げることが効果的です。一方で、自分自身は傾聴力を向上させ、相手に心理的な安全性を感じてもらうことを意識します。 準備は万全ですか? また、1on1や振り返りの前には、各メンバーごとに目的を再整理し、その時に相手をどの状態に導きたいかを具体的に書き出しておくことが大切です。前回よりも成長した状態を意識し、まだ十分に傾聴ができていないと感じられる場合は、自分からの発言を控え、相手に話す余裕を持たせるよう努めましょう。

データ・アナリティクス入門

平均値の裏側に潜む本当のデータを読み解く

平均値の理解とは何か? データ分析において、平均値という言葉に惑わされ、その中身を詳しく見ることを怠りがちだったことに気づかされました。改めて、目的を無視した代表値の活用が良い分析結果につながらないと感じました。平均値にも加重平均や幾何平均など様々な種類があり、それらの算出方法を学べたのはとても良かったです。 代表値への新たな挑戦 現在、自分が理解したつもりでいる部分が多いと考えています。今後は、他の練習問題にも挑戦し、世の中に溢れている代表値がどのように算出されているのかを更に考えられるように努めたいです。 分析結果をどう伝えるか? データを分析し加工することによって、相手に何を伝えたいのかを明確にし、グラフや代表値の算出を行いたいと思いました。また、公的データでも分かりやすい平均値だけを提示して受け取り手の印象に強く残す手法がありますが、代表値の裏側にあるデータの分布を調査した上で、そのデータから何が言えるのかをしっかり考えたいと思います。 データ加工で心掛けること 以下の点を心がけます: - 加工データの裏側を考える癖をつける - 自分でデータを加工し、伝えたいことが伝わるようにする - データ加工の前に必ず要件定義を行う - 様々な平均値の算出方法について、仕組みや成り立ちを理解する

データ・アナリティクス入門

データで紡ぐ成長の物語

データ整理は安心? データの切り出し方について、以前は数字が欲しいならこれといった感覚で扱っていたため、具体的に整理する作業が非常に有意義でした。成長率の求め方についても久しぶりに見直し、これまで間違った計算方法を用いていたことに気づけたのは大きな収穫です。 分布分析の効果は? 定量分析の手法として、代表値と分布に注目し、データをビジュアル化してより理解しやすくする方法を学びました。平均値が外れ値の影響を受けやすいという点に加え、単純平均、加重平均、幾何平均、中央値といった代表値や、標準偏差を用いた散らばりの把握、さらにはヒストグラムでばらつきを表現するテクニックが印象に残りました。 データ活用の秘訣は? また、ECにおける購入者分析や売上、アクセス解析にこの知識を活かせると感じました。特に、複数の商材を取り扱う場合のデータ集計処理について、最終的に求める数値や、それをどのようにビジュアル化すれば良いのかを意識したデータ分析ができるようになりました。 感覚から論拠に? これまで感覚的に行っていたデータ処理について、なぜその手法を用いるのかを説明できるようになり、自信がつきました。今後は月次のアクセス状況の説明にも、より論拠をもって提案し、販売方針や経営判断に結びつけていければと考えています。

データ・アナリティクス入門

ゼロから始める客観分析術

どの分析方法が有効? 問題を特定する際のアプローチについて、分類や分解の手法、考え方の基本を身につけることで、さまざまな課題に対してゼロから悩むことなく、正しい分析を進められると実感しました。学習の中ではプロセスの分解に重点を置いていましたが、他の方法についても幅広く覚えておきたいと考えています。 提案の見直しは必要? 実業務においては、顧客への提案で解決策ありきで進めてしまうケースがあり、都合の良い分析になってしまうことがあります。こうした提案は初めは良い印象を与えるかもしれませんが、本質的な課題解決にはつながらず、長期的には評価を下げるリスクがあるため、業務の進め方を見直す必要があると感じました。まずは、これまで学んだ分析のステップに基づき、客観的かつ正確な分析を実行した上で、最適な解決策を提案することが重要だと思います。 行動計画はどう決める? 具体的な行動としては、実業務で特定のサービスに依存せず、客観的で正確なデータ分析を徹底し、複数の選択肢を比較検討することが求められます。そして、適切な判断基準を設定して最適な解決策を提案することを意識します。加えて、提案後の振り返りを行い、実施した解決策の効果をデータで検証する仕組みを整えることで、継続的に提案の機会を創出できると考えています。

「印象 × 良い」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right