データ・アナリティクス入門

分解思考で見える未来への一歩

授業の何が良かった? ライブ授業でこれまで学んだことのおさらいができた点は、とても良かったと感じています。講義の中で、データ分析は比較が基本であること、また分析の前には明確な目的と仮説が重要であると改めて認識しました。 問題解決の視点は? さらに、問題解決には「what」「where」「why」「how」の視点が有効であると学び、特に「what」と「where」の感度を高めるために、分解の切り口を増やす活動に取り組む意欲が湧きました。 動画と集客はどう? また、動画クリエイティブの課題については、演者、媒体、長さなどの各要素に分解して問題点を特定し、数値の改善を目指す方法論が印象に残りました。同様に、集客キャンペーンの改善に関しても、何が悪かったのかを明確にすることで、次回実施への具体的な提案に繋げることの重要性を感じました。 分解は何を示す? とにかく、問題を分解して考える姿勢が大切だと実感しています。データを集めた後は、グラフなどを用いて視覚化することで理解を深め、施策実施後には常に仮説との比較を行って、正しかった点や改善すべき点を明確にしていきたいと思います。

データ・アナリティクス入門

仮説で切り拓く受講生の挑戦記

分析って何を探す? 分析とは、物事を比較しながら目的意識を明確にし、仮説を立てつつ進めるプロセスです。分析を効果的に進めるためには、「What(何を)」「Where(どこで)」「Why(なぜ)」「How(どのように)」という手順に沿うと良い成果が得られる可能性があります。 フレームをどう活かす? 特に「Why」の段階では、ケースに応じて既存のフレームワークを活用することで、より深い洞察が得られるでしょう。また、分析結果をグラフなどで見える化することにより、その説得力は一層増します。 障害の本質は何? 障害分析においては、過去の事例を参考にしながら、現時点では見えていない問題点を抽出することが重要です。これまでは既存の数字を並べるだけで手探りだった部分も、今後は「何を明らかにするか」という目的意識を持って進めたいと考えています。 データ活用はどう? まずは、障害発生件数の減少を目指すために、どのようなデータが必要かを検討し、過去の事例から現在の課題を洗い出すことから始めます。その上で、得られた情報をもとに自分なりの仮説を立て、分析作業を着実に進めていきたいと思います。

データ・アナリティクス入門

グラフが語る数字の物語

グラフ化の効果は? データ分析では、まずグラフ化して数値を視覚的に確認することで、比較がしやすくなる点が基本だと学びました。これにより、数字の背後にある特徴や傾向が一目で把握できるようになります。 代表値の選び方は? 講義では、データの代表値として「単純平均」「加重平均」「幾何平均」「中央値」があること、そしてデータのばらつきを示す「標準偏差」の重要性を改めて認識しました。どの平均値を用いるかは、分析の目的に応じて選ぶ必要がある点も印象的でした。 必要な基礎理解は? 普段の業務では、無意識のうちにデータ収集やグラフ化を行っていたため、なぜそれが必要なのかを体系的に学ぶことができたのは大変有意義でした。講義を通して、さまざまな角度からデータを評価できる手法を身につけることができました。 多角的評価の理由は? また、クライアントや社内のデータを用いたマーケティングやプロモーションの計画では、ピクトグラムや棒グラフで全体感を把握した上で、単純平均だけでなく「加重平均」「幾何平均」「中央値」「標準偏差」などを組み合わせ、多面的な視点からの分析が重要であると実感しました。

データ・アナリティクス入門

ロジックで磨く問題解決力

どうすれば問題を整理? 問題解決においては、まず「What⇒Where⇒Why⇒How」の順で分析を進めることが重要だと実感しています。特に、何が問題なのかを正確に把握するためには、問題の要素を十分に分解することが必要です。これまでは、要素分解が不十分であったと感じたため、今後はロジックツリーを活用し、問題解決に必要なポイントを漏れなく洗い出していきたいです。また、図を用いてMECEの観点から整理することで、問題の俯瞰と検索がしやすくなると感じています。 運用方法は本当に適切? 現在、チーム体制の転換期にある中で、従来の運用方法では今後問題が生じる可能性があると予想しています。実際に、これまでの運用を続ける場合にどのような問題が発生するか、その理由を今回のプロセスで分析できると確信しています。今後は、運用メニューや業務内容を特定の要素に分解し、MECEを意識しながら、問題の特定に取り組んでいきたいと考えています。 定性分析で何が見える? さらに、仕事において定性的な問題を分析する際、定量的な視点や切り口を増やす方法を学び、より具体的な分析に結びつけていければと思います。

クリティカルシンキング入門

数字が描く学びの軌跡

どうして可視化する? グラフなどを用いた「可視化」を意識することで、一次データをより細かく分け、隠れた傾向を発見することが可能になります。数字を味方につけることが、データの真実を浮き彫りにする第一歩です。 データ切り口の意味は? また、データを意味のある切り口で分けることの重要性も指摘されています。複数の視点からデータを検討し、活用することで、分け方一つで導かれる結論が変わる可能性を理解する必要があります。 見た目だけで判断? さらに、データの分解に際しては、結論を急がず、ぱっと見の傾向が必ずしも全体を示しているわけではないということに注意が必要です。ロジカルシンキングの基本として、MECE(漏れなくダブりなく)を意識し、無駄のない切り口で丁寧に分析することが求められます。 分解のコツは何? 具体例として、商品ごとの顧客層を分析する際には、年齢、性別、職業、購入時の時間帯や曜日など、さまざまな観点から分解を試みることが有効です。ただし、複数の切り口を用いる際も、ひと目での判断によって誤った解釈をしてしまわないよう、十分に検証する姿勢が大切です。

クリティカルシンキング入門

全体把握で広がる発見の世界

MECEはなぜ有効なの? 「分かる」とは、単に知識として理解するだけでなく、物事を適切に分けて考えることに他なりません。まず、全体を定義し、その上でMECE(Mutually Exclusive, Collectively Exhaustive)の視点を取り入れて各要素を分解することが大切だと感じました。このプロセスを繰り返すことで、従来の通例にとらわれず、別の角度からの新たな発見も期待できます。 市場はどう捉える? また、市場調査やマーケティングにおいても、MECEの考え方は非常に重要です。ついつい感情や先入観から一部の要素だけを重視してしまいがちですが、全体像を正確に把握し、それぞれの要素が適切に分析されているか、見落としがないかどうかを常に意識する必要があります。 意見の裏には何が? さらに、他者からの提案を受け入れる際にも、全体を俯瞰して本質がどこにあるかを探り、本質をとらえるための切り口が適切かどうかを検証することが重要です。この際、その分け方が唯一の正解であるのか、または別の視点から新たな発見が得られる可能性がないかを慎重に考えることが求められます。

マーケティング入門

お客様の本音に気づく瞬間

潜在ニーズを発見できる? 成功するマーケティングにおいて、顧客が抱える潜在的な困りごと―すなわちペインポイントを見出すことは非常に重要です。顧客自身が気付いていない欲求を言語化するためには、購買履歴やサイトの回遊履歴などの定量的な指標と、アンケートやグループインタビューなどによる定性的な指標の両面から分析する必要があります。 自社強みはどこ? ペインポイントが明確になった後は、他社に先んじて自社の強みを活かし、その解消策を講じることが求められます。このため、競合他社と比較して自社の優位性や強みが何であるかを客観的に整理し、その認識をチーム全体で共有することが不可欠です。 定性評価はどうなる? また、自社の顧客についてペインポイントを検討する際には、購買履歴やサイトの回遊データといった数値分析に加えて、顧客アンケートなどを通じた定性的な評価も取り入れる必要があると感じます。 チーム共有は確実? さらに、競合他社に対して自社の強みや優位性を明確にし、客観的な視点で整理した内容をチーム内で共通認識として持つことが、今後の施策を円滑に進める上で重要となると考えます。

クリティカルシンキング入門

問いが拓く本質解決への道

問いの立て方は? 今回の学習テーマは、私がこの講座で最も学びたかった内容そのものです。ビジネスにおいて課題を解決するためには、まず何をすべきかを明確にし、的確な施策を打つことが大切です。そのためにはまず「問い(イシュー)」を立て、その問いから目をそらさずに取り組むことが重要だと学びました。また、同僚や周囲の人とその問いを共有し、一緒に課題解決に向けて考える姿勢も必要です。 分析結果は何を示す? 私の業務では、アンケートデータやヒヤリハットデータの分析、そして事故防止策の策定を行うことが求められています。データ分析を終えた後に、「では何が課題か」「何をすべきか」を考えるフェーズに必ず差し掛かります。これまでの経験では、分析結果をもとに比較的実践しやすい案を出していましたが、本質的な解決には繋がらないプランに終始してしまっていました。 実現できる解決策は? 今回の学びを通して、まず本質的な課題解決のための問いを立てることの重要性を再認識しました。そして、その問いに対して実現可能な施策を考えるプロセスにシフトすることで、より根本的な問題解決が図れると確信しています。

クリティカルシンキング入門

問題の本質を捉える力を磨こう

本質はどう見える? 課題解決において、目の前の問題に直接取り組むのではなく、本質をとらえてイシューを明確にすることの重要性を感じました。これを実現するためには、物事を多角的に分析する必要があります。また、WEEK1からの学びをすべて振り返ることが今回の学びにつながると感じたため、再度復習をしようと考えました。 処方データの示唆? 医師への処方拡大を検討する際には、処方データや医師の治療方針などから課題を特定します。薬剤の処方データを扱う際には、複数の観点からデータを分解し、適切なグラフで傾向を示します。その後、イシューを特定し、実施すべき施策を決定します。 対象エリアは? 講演会を企画する場合には、対象エリアのデータを再確認して、取り組むべき内容について検討します。企画書を作成する際には、この情報をもとに具体的な内容を決定します。 計画の根拠は? 上長への活動計画の報告においては、担当施設の現状をデータにより明確化し、ボトルネックを明らかにした上で、なぜその計画に至ったのかを説明します。こうしたアプローチを取ることで、本質的な課題解決を進めることができます。

データ・アナリティクス入門

数字と仮説のドキドキ分析

どのデータが最適? 分析とは「分析は比較なり」という考えを基本に、どのデータを使い、どう加工し、何を明らかにするかを吟味する作業です。各種データに適した加工方法やグラフの見せ方が存在するため、やみくもに加工するのではなく、目的に合わせた手法を採用することが大切です。 目的と仮説は何? ビジネスデータの分析においては、データに取りかかる前に必ず「目的」と「仮説」を明確にする必要があります。プロセスは、まず具体的な仮説の設定から始まり、既存や新たなデータの収集、集計や代表値の算出、さらにはグラフを用いた加工を経て、聞き手が一目で理解できる形にまとめ上げるという流れで進められます。数字に基づくストーリーづくりが成功の鍵となります。 3C視点で何が見える? また、1つの事象を分析する際には、シンプルな課題であっても市場・競合・自社という3Cの視点を用いることで、当初は見落としていた要素が浮かび上がる可能性があります。意識的に3C分析に基づいて仮説を抽出することは、グループワークを通じて他者の視点を取り入れ、個人の思考力の限界を補いながら精度を高める効果的な手法と言えます。

アカウンティング入門

数字が語る未来へのヒント

P/LとB/Sの基礎は? 本講座を振り返ることで、自分の頭の中を整理する良い機会となりました。まず、P/LとB/Sの基本構造を理解し、両者がどのように連動しているのかを具体的にイメージできるようになりました。 価値提供をどう捉える? さらに、財務分析にあたっては、まず対象となる事業がどのような価値を提供しているかを正確に捉えることが重要であると実感しました。提供する価値に応じて、望ましい財務状況も異なるため、単に利益の大きさや有無だけで事業の健全性を判断することはできないという視点を得ました。たとえ利益が計上されていても、流動負債が大きく短期間での返済が必要な場合、事業としての安全性は十分ではないと理解しました。 将来計画はどう進む? 今後は、この学びを期初の方針や戦略策定に活かしていきたいと考えています。これまであまり注目してこなかった財務面の視点を取り入れ、自社の財務状況を踏まえた上で、自分なりの考察や意見を具体的な方針・戦略に反映させるよう努めたいと思います。今月予定されている企業の中間決算発表を機に、まずは自分なりに財務状況の分析から始めることにします。

クリティカルシンキング入門

柔軟な理由が生む伝わる力

伝わる文章って何が重要? 今週の講座では、「相手に伝わる文章を書くポイント」を学びました。日本語の正確な使い方や、文章評価、そして手順を踏むことの重要性については再確認できたものの、特に印象に残ったのは、状況や相手に応じて理由付けを変えることの大切さでした。これまで一つの正しい理由に頼る傾向があった私ですが、相手や場面に合わせて複数の理由を用意する柔軟さが必要だと気づいたのです。この発見は、単に文章を書く力だけでなく、自分の考えを整理して伝える能力そのものを向上させる貴重な学びとなりました。 複数の理由付けはなぜ効果的? 業務では資源価格の情報収集と分析を担当していますが、上役や関係者への説明時に、データだけではなく相手や状況に合わせた複数の理由付けが非常に有効であると実感しています。ふんわりとした印象や可能性に基づく理由付けも、場合によっては説得力を高めることに気づき、説明の幅を意識するようになりました。これからは、分析結果を整理して提示する際に、データに加え補足的な視点や相手の立場を考慮した複数の説明パターンを準備し、より多角的な情報提供を目指したいと考えています。
AIコーチング導線バナー

「分析 × 本」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right