データ・アナリティクス入門

思考の質を高めるMECEとMICE活用法

MECEの考え方とは? MECEの考え方は、切り口を重複させずに漏れなく設定することが重要です。どのような切り口が最適かを判断するためには、高い感度が求められます。これに関しては、分析の経験を積むことや、多方面からの意見を聞くことも必要と感じています。 ロジックツリーの活用法 ロジックツリーについては、論理的思考を活用することで、適切な判断ができるようになります。 MICEの活用には何が必要? MICEの考え方は、実務に役立ちそうで、特に顧客分析など日常的な業務での活用チャンスが多いです。「重複なく漏れなく」を実現することはその通りと感じつつも、切り口の設定によって重複を避けることが難しい場合もあり、その点をどのように克服するかが課題だと考えています。 BI分析へのMICEの導入 業務で作成しているBI分析において、MICEの軸を取り入れることにしました。切り口については様々な角度から実施し、どの分析が効果的であるかを検討します。また、ロジックツリーについては、既にパイプライン分析で似たことを行っていますが、改めてロジックツリーを用いた分析も進めてみようと思います。

アカウンティング入門

構成要素で読み解く利益のヒミツ

構成要素ってどう考える? 構成要素を考えるという視点が特に印象に残りました。高い売上高の要因を探る際、まず売上を単価と客数に分けて整理し、それぞれを分析することで全体を正確に把握できるという点が学びとして響きました。 利益向上はどう実現? また、利益向上のためには売上を伸ばすか、コストを下げるかの二つの選択肢があるものの、単純にコストを削減するだけではなく、その結果として売上に悪影響が出ないかを注意深く検証する必要があるという考え方にも納得しました。 実務にどう繋げる? 直接業務に活かすのは難しい部分もありますが、分析の際に構成要素に分けて考える姿勢や、影響度合いを踏まえた意思決定の重要性は、日常業務においても間接的に活用できる貴重な学びだと感じました。 他業界の意見は? 今回の設問では、コーヒー豆の単価が下がることによる影響や、なぜ売上が順調であるのかを考えることで、利益向上のために売上を伸ばす方法や、削減すべきコスト、必要な情報について再考する良い機会になりました。また、他業種・他業界の方々がどのような視点を持っているのかを伺ってみたいという期待も浮かびました。

デザイン思考入門

ワクワクが生む本当の学び

授業モチベ低下の理由は? 現在の業務では、学生の学業に対するモチベーションの低さが大きな課題となっています。授業アンケートなどの定量分析だけでは、学生の本音を把握するのは難しいため、フランクな環境で直接インタビューを行ったり、授業課題に取り組む姿を観察するなど、定性分析の手法を取り入れることが効果的ではないかと感じました。 内発性向上は可能? 実際に、学業に一生懸命取り組む数名の学生に「なぜそれほど頑張れるのか」と尋ねたところ、ほとんどの場合「単位を取りたいから」や「良い成績を取りたいから」といった外発的動機づけによる回答が返ってきました。これは、彼らが自らの内発的な動機、つまり学業に対するワクワク感の醸成ができていないことを示しており、強制ではなく自主的に学びを楽しむ環境作りが必要であると改めて実感しました。 課題の本質はなんだ? また、「解決すべき本質的な課題を明確にすること」ができれば、課題解決の半ばは達成したと言えるでしょう。しかし、インタビューや観察から本質的な課題を的確に抽出するのは容易ではなく、何度も試行錯誤を繰り返しながら進めていく必要があると感じています。

クリティカルシンキング入門

イシューを見極める力で会議を成功に導こう

問いを見極める意義とは? 問いを見極めることは非常に重要です。イシューを正確に把握することで、重要な課題を見逃すことなく、的確な解決策を導き出すことができます。一方、イシューを見誤ると誤った解決策に繋がりかねません。そのため、イシューは具体的に示すことが重要です。 会議での論点をどう維持する? 会議や話し合いの中では、論点がそれることが多々あります。そのため、一度特定したイシューを常に意識し続けることが大切です。アンケート結果や業務数値の分析を行い、それに基づいて解決策を提示するためには、先にイシューをしっかりと特定する必要があります。そうしないと、議論が論点からそれてしまい、得られた答えが全く異なるものになる危険性があります。 正しい話題選びが生む効果とは? 会議の場面でよく「この話は何の話をしているのか?」と思うことがありますが、それはイシューを先にしっかりと特定できていないことが原因です。まずはイシューを特定し、それについて話を進めることで、正しい解決策を導き出せます。問題に直面した際、その問いを仲間と共有し、解決策を見出すことで、仕事の効率を上げることができます。

データ・アナリティクス入門

仮説×データで切り拓く未来

どうして条件を揃える? 今回の実践では、普段の業務で使っているデータ分析のフレームワークと非常に近い感覚を得られました。時期要因や市場状況、法令改定など、すべての条件を完全に統一することは難しいですが、できるだけ条件を揃えた上でA/Bテストを行う大切さを再確認しました。 仮説はどう検証する? また、仮説を立てる際には、一人の頭脳や限られた環境だけでは限界があると感じました。時間を確保し、場合によっては他者の意見や視点を取り入れながら、しっかりと仮説を検討し、データの切り口を考える必要性を実感しました。 採用分析のコツは? 顧客の採用データ分析については、応募から入社までの全てのプロセス(場合によっては書類選考の評価も含む)を明確に線引きし、どの段階で大きな離脱が起きているのかを特定できるよう、可視化の土台を整える重要性を学びました。 改善の基準は何? さらに、改善施策を検討する際には、どの指標を、どのように改善するための施策なのか、また、いつのスコアを基準にするのかを明確にすることが必要です。振り返りの際には、必ず条件を揃えて比較することが求められると感じました。

データ・アナリティクス入門

代表値が語る!新たな比較のヒント

グラフだけで十分? これまで、単にグラフを用いて数値を視覚的に比較する方法に頼っていました。しかし、代表値に着目した比較はほとんど行っておらず、今回、加重平均、幾何平均、中央値、標準偏差といった比較に有用な数値があることを学びました。 業務への活用は? この学びを自分の業務にどう活かすかが、今後の課題だと感じています。手元にある数字の代表値を用いることで、どのような比較ができるのかを明確にすることが、新たな発見につながるデータ分析のカギになると考えています。 他地域比較は? 特に、前年や他地域との比較において、データを代表値に置き換えて検証することで、新たな示唆が得られるかもしれません。現状、扱っているデータはシンプルですが、代表値を取り入れることで比較分析がより効率的になる可能性を感じました。 数値分析を実践? まずは、現時点でのデータの代表値を算出することから始め、加重平均、幾何平均、中央値、標準偏差を用いた分析にチャレンジしてみたいと思います。これによって、短時間で効果的な比較が実現できるか、または新たな発見があるのかを検証していきたいです。

データ・アナリティクス入門

グラフが語る数字の物語

グラフ化の効果は? データ分析では、まずグラフ化して数値を視覚的に確認することで、比較がしやすくなる点が基本だと学びました。これにより、数字の背後にある特徴や傾向が一目で把握できるようになります。 代表値の選び方は? 講義では、データの代表値として「単純平均」「加重平均」「幾何平均」「中央値」があること、そしてデータのばらつきを示す「標準偏差」の重要性を改めて認識しました。どの平均値を用いるかは、分析の目的に応じて選ぶ必要がある点も印象的でした。 必要な基礎理解は? 普段の業務では、無意識のうちにデータ収集やグラフ化を行っていたため、なぜそれが必要なのかを体系的に学ぶことができたのは大変有意義でした。講義を通して、さまざまな角度からデータを評価できる手法を身につけることができました。 多角的評価の理由は? また、クライアントや社内のデータを用いたマーケティングやプロモーションの計画では、ピクトグラムや棒グラフで全体感を把握した上で、単純平均だけでなく「加重平均」「幾何平均」「中央値」「標準偏差」などを組み合わせ、多面的な視点からの分析が重要であると実感しました。

データ・アナリティクス入門

データ分析で広がる新たな視点と可能性

データの深意を探るには? 各データを深く掘り下げ、その背後に何が見えるかを考えることが重要だと感じました。数値からクリック率やコンバージョン率を計算することで、新たな視点から現状を考察できると思います。また、問題に関連する要素とそうでない要素を分けて考える対概念や、適切な判断基準を設けて各案を評価する過程の重要性を学びました。常に思考の幅を広げることを意識することが大切だと感じます。さらに、A/Bテストを行うことで結果を比較でき、適切に検討を進められることも分かりました。 学んだ知識はどう活かす? 自分の業務にすぐに活用できるかはまだわかりませんが、今週学んだデータの応用や対概念の考え方は役立ちそうです。3W1Hのステップを繰り返しながら、丁寧に分析していくことが大切だと改めて感じました。 採用手法は最適か? 実行可能な業務として、採用活動にもこの手法を取り入れられるのではないでしょうか。採用ページのクリック数と応募者数のデータを取得し、ファネル分析や離脱ポイントを特定した上で、A/Bテストを実施すれば、最適なコンテンツや応募フォームを判断できると思います。

データ・アナリティクス入門

仮説検証で切り拓く成功の道

問題整理のポイントは? データ分析を進める上で、What、Where、Why、Howという問題解決のステップを行き来しながら整理することが非常に大切だと感じました。こうしたステップを意識することで、問題を深く理解し、的確な改善策を導き出すことができると思います。今までプロセスを細分化して考えることを怠っていた分、今後はその重要性を再認識し、確実に実行していきたいと考えています。 テスト検証の極意は? 特に、A/Bテストにおいては、条件を揃えて1要素ずつ検証することが成功の鍵であると改めて実感しました。これまでステップを踏んで分析を進めることはできていたものの、動きながら仮説を試し、データを収集する視点が不足していたと感じます。今後は、常に仮説検証とデータ収集を並行して進める必要があると認識しています。 実施環境をどう見る? また、実際に業務でA/Bテストを実施する際、特定の店舗でのみ実施していたため、環境要因に対する配慮が不足していたと感じました。今後は、各店舗ごとの環境差を考慮した上で、より均等な条件でテストを行い、信頼性の高いデータを得られるよう努めたいと思います。

データ・アナリティクス入門

ロジックで磨く問題解決力

どうすれば問題を整理? 問題解決においては、まず「What⇒Where⇒Why⇒How」の順で分析を進めることが重要だと実感しています。特に、何が問題なのかを正確に把握するためには、問題の要素を十分に分解することが必要です。これまでは、要素分解が不十分であったと感じたため、今後はロジックツリーを活用し、問題解決に必要なポイントを漏れなく洗い出していきたいです。また、図を用いてMECEの観点から整理することで、問題の俯瞰と検索がしやすくなると感じています。 運用方法は本当に適切? 現在、チーム体制の転換期にある中で、従来の運用方法では今後問題が生じる可能性があると予想しています。実際に、これまでの運用を続ける場合にどのような問題が発生するか、その理由を今回のプロセスで分析できると確信しています。今後は、運用メニューや業務内容を特定の要素に分解し、MECEを意識しながら、問題の特定に取り組んでいきたいと考えています。 定性分析で何が見える? さらに、仕事において定性的な問題を分析する際、定量的な視点や切り口を増やす方法を学び、より具体的な分析に結びつけていければと思います。

クリティカルシンキング入門

数字が語る真実と見えない可能性

数字分解で何が見える? 数字を分解することで、今まで見えなかったものが見えてくることに改めて感動しました。しかし、正しくデータを分析するためには、多くの項目を分解することが重要です。たとえ何も見えなかったとしても、それ自体が「見えなかった」という情報を得られる点が印象に残りました。 グラフで何が見える? また、数字をグラフなどで可視化することで、視覚的に理解できることの重要性を再認識しました。 業務分析の深さは? 私は現在、業務の取り組み状況を分析し、弱点を教育する部門に所属しています。分解できる数字は限られていますが、その中で複合的に分解を繰り返し、表面的な分析にとどまらないよう心掛けています。これにより、真の課題を明らかにし、教育の内容や方針を考察できます。 教育方針の決め方は? 2025年度の教育方針を考えるにあたって、まずは12月までに大枠を検討します。さらに、詳細な教育方針や内容については、対象層に分けてチーム内でよく検討し、1月中旬までに考えます。その後、上司の意見を取り入れてブラッシュアップし、最終的には3月初めに発信できるよう進めていきます。

クリティカルシンキング入門

問いが拓く本質解決への道

問いの立て方は? 今回の学習テーマは、私がこの講座で最も学びたかった内容そのものです。ビジネスにおいて課題を解決するためには、まず何をすべきかを明確にし、的確な施策を打つことが大切です。そのためにはまず「問い(イシュー)」を立て、その問いから目をそらさずに取り組むことが重要だと学びました。また、同僚や周囲の人とその問いを共有し、一緒に課題解決に向けて考える姿勢も必要です。 分析結果は何を示す? 私の業務では、アンケートデータやヒヤリハットデータの分析、そして事故防止策の策定を行うことが求められています。データ分析を終えた後に、「では何が課題か」「何をすべきか」を考えるフェーズに必ず差し掛かります。これまでの経験では、分析結果をもとに比較的実践しやすい案を出していましたが、本質的な解決には繋がらないプランに終始してしまっていました。 実現できる解決策は? 今回の学びを通して、まず本質的な課題解決のための問いを立てることの重要性を再認識しました。そして、その問いに対して実現可能な施策を考えるプロセスにシフトすることで、より根本的な問題解決が図れると確信しています。
AIコーチング導線バナー

「分析 × 業務」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right