マーケティング入門

限られた時間で切り拓く未来

目標が見えるのはどう? 現在の立ち位置を見直す中で、目指す方向に不足しているものや課題が明確になりました。今後のステップもある程度見えてきた一方で、時間が有限であるため、時間軸を意識しながら必要な要素を取捨選択することが求められます。 リソース活用はどうするの? 自社のリソースが限られる中、全方位的な営業には限界がある現状を再認識しました。どのお客さまにどのような価値を届けるかを見つめ直し、まずは自社のリソース分析(強みや課題の把握)から取り組むべきだと感じています。 俯瞰視点は何を示す? また、業務を俯瞰する際には、フォアキャスティングだけでなくバックキャスティングの考え方も取り入れ、学んだ内容を活かしたいと考えています。常に広い視野と俯瞰的な視点を保つことで、新しい業態のヒントを見出し、業務に取り組んでいきたいと思います。

データ・アナリティクス入門

適切な比較が導く分析力アップの秘訣

比較の本質とは何か? 分析の本質は比較にあり、適切な比較対象を選ぶことが重要であると学びました。特に、比較対象が適切かどうかを判断する際には、分析の目的に立ち返ることが大切だと感じました。 外部環境の影響にどう対処する? 中期経営計画の策定や予算予想の達成に向けて、事業の課題や改善点を過去の実績から分析するだけでなく、外部環境が事業に与える影響についても分析し、仮説を立てる場面でこの知識を活用したいと思います。 日常業務での気付きと見直し 講義を聞いた時点では、一見すると当たり前の内容に思えることも、実際に練習問題を解こうとすると、目的を忘れ、適切な比較対象を考えられないことに気づきました。私自身も業務において、本来の目的から外れた分析や結論に至ることがあるため、適切な比較ができているかを常に見直す習慣を持ちたいと考えます。

アカウンティング入門

流動 vs 固定、財務分析の奥深さ

資産と負債はどう関係? 流動資産が流動負債を上回る状態が良いことを理解しました。しかし、固定資産と純資産の関係についてはまだ十分に理解できていません。新しい業界と伝統的な業界では、貸借対照表における固定資産の比重が異なることが分かりました。 返済能力はどう評価? 流動資産と流動負債のバランスを見る際に、短期返済が必要なものを即座に返済できるかを確認したいと思っています。業界特有の特徴を理解し、共通点と相違点を把握した上で、定量的および定性的に分析を進めていきたいです。 支援前に何を確認? 業務での使用イメージはまだあまり湧きませんが、損益計算書と同様に貸借対照表も詳細に確認し、顧客企業への支援を始める前に定量分析や定性分析をしっかりと行うことが重要です。また、数年分の貸借対照表を見て、その推移を確認することも必要です。

アカウンティング入門

数字だけじゃなく実像を読み解く

財務の見方はどう? 今回の学習で、業種や企業の特性に応じた財務諸表の読み方が変わることを実感しました。単に数字を見るのではなく、それぞれの企業の特徴を踏まえて仮説を立てながら財務諸表に向き合うことで、より深い理解が得られると感じました。 実践で力をつける? 具体的には、CVCの業務において、投資先やアライアンス先企業の財務諸表を詳細に分析し、企業の強みや弱みを把握する手法や、日経新聞などで注目している企業の情報をもとに投資判断や戦略の立案に活かす方法を学びました。また、実際に特定の企業の財務諸表を基に予想を立て、実態との比較検証を行うサイクルを実践することの重要性を再確認しました。さらに、学んだ内容を上司や同僚に報告してフィードバックを受けることで、実践的な知識をさらに深め、業務に生かしていこうという意欲が高まりました。

データ・アナリティクス入門

仮説で広がる学びの未来

仮説思考はなぜ重要? データ分析において仮説思考が重要であると実感しました。しかし、まだ完全に身についていないため、今後の業務の中で積極的に意識し、訓練していく必要があると感じています。理解したつもりでも、実際に言葉にして表現する際には苦労することもありました。 経験則から何が変わる? 今回の学びを生かし、所属する部門で担当している市場動向や契約に関するデータの収集と分析に、従来の経験則に基づく判断から仮説思考に基づいた立案へとシフトしていきたいと考えています。 言語化はどうする? さらに、言語化の訓練を重ねることで、仕事はもちろん日常生活においても仮説思考プロセスを意識して課題に取り組む習慣を身につけたいと思います。そして、適切な結論を導き出すために、さまざまなフレームワークや手法の活用を習慣化していく所存です。

クリティカルシンキング入門

新しいデータ分析手法で業務効率化に成功!

データ加工の基本技術とは? データの加工の仕方、分け方の工夫、分解の注意点の3つを学びました。特に注意が必要だと感じたのは、分け方の工夫と分解の注意点です。手を動かしてそれらしいデータが見えた際にすぐに結論を出してしまうと、誤った判断に繋がる可能性があると感じました。 商談データ分析の新アプローチ? 私の業務では、特に商談や受注に関するデータの分析を担当しています。これまでとは異なる切り口でデータを集計し、同時に新しい仮説をもとにデータを分解してみることは、すぐに実践できそうです。 仮説を活用したデータの再確認 商談や受注データの吸い出しを行う際には、常に新しい仮説を持って取り組むことが重要です。そして、一見それらしいデータが見えても、一段階深く集計の漏れや新しい切り口、データの正確性を再確認することが必要です。

データ・アナリティクス入門

目的と課題を見極める!ビジネス成功の鍵

分析の目的を再確認するには? 分析は、目的があって初めて意味を持つことを再認識しました。ビジネスパーソンの価値は、会社の目的や日々の業務の課題を、いかに効率的かつ低コストで解決できるかにかかっていると考えます。 課題共有の方法は? まだ具体的な業務への分析の活用イメージはありませんが、まずは目的や課題をしっかりと定めることが重要です。特に、その課題が他者からの依頼である場合、最終的に得たいゴールを詳細に明確にし、目的や課題を共有するために議論を重ねることが必要です。 新規ビジネスの土台を整えるには? 新規ビジネスを検討する際には、まず会社や部署の目的やゴール、現時点での課題を正確に把握することを重視したいです。その土台が整った上で、各種フレームワークやツールを活用した分析に進むことができると考えています。

クリティカルシンキング入門

視点を広げて苦情対応を改善する方法

MECEはどう捉える? MECEに分解することについては言葉で知っていたものの、実際に考えると難しい部分もあると理解しました。全体像を丁寧に把握することが重要であると学びました。様々な観点から数字を分析し、漏れや重複がないか確認しながら、日々の業務に活かしたいと思います。 苦情対応の現状は? 私は苦情対応を業務で行っており、年間で約50~60件ほどの苦情を受け取っています。これまで、年間傾向の分析が疎かになっていたため、この分析を生かして品質改善に努めたいと考えています。 改善の具体策は? まず、苦情を製品別、内容別、製造所別など、様々な観点で集計・分析します。そして、そこから改善点を見つけ出し、製品品質の向上につなげていきたいと思います。また、分析結果を基に改善計画を立て、具体的な行動に移していきます。

データ・アナリティクス入門

仮説×データで未来が変わる

仮説とフレームワークは? 本講座では、問題解決のプロセスにおいて、スピードと精度を向上させるために、仮説を立てながら分析を試みる重要性を学びました。また、3Cや4Pといったフレームワークを効果的に活用する方法も理解できました。 必要データはどうする? 仮説に基づいて必要なデータを抽出し、場合によっては新たにデータを取得する必要があることも実感しました。既存のデータ分析にとどまらず、サーベイの実施などによって分析に不可欠な情報収集にも役立てることができると感じました。 多角的観点は何故? さらに、分析の視点は単に数値やデータを検討するだけでなく、データ整備や企画立案の段階でも重要であるという気づきを得ました。今後、業務のあらゆる場面でこれらの視点を取り入れながら取り組んでいきたいと思います。

クリティカルシンキング入門

多角的視点で広がる学びの力

切り口の多様性は必要? 切り口が一つだけだと、偏った答えになる可能性があることがわかりました。しかし、複数の切り口を見つけるのは難しいとも感じました。自分が導きたい答えを得るために切り口を模索するという方法もあるのでは、と考えました。 実務での発見と応用 実務では、複数の業務を同時に行っているため、チームの弱点や強みを発見することに役立つと思います。今年の自分の目標の達成にも、多角的な視点での分析が重要だと考えています。 マインドの数値化は可能か? 昨年一年をかけて取り組んだプロジェクトでは、マインドを数値化するのは難しいと感じていました。しかし、異なる切り口を探して、数値化が可能でないか再考したいと思います。現在数値化されている部分についても、他の切り口がないか再検討し続けたいと考えています。

データ・アナリティクス入門

データ分析で仮説と検証を学ぶ

仮説の立て方を見直すには? 今まで、データ分析において仮説から検証のプロセスをなんとなくで行っていたが、複数の仮説を立てることや、網羅性を持たせることはあまり意識していなかった。また、立てた仮説の検証だけでなく、反対の事象を裏付けるデータも収集することで、より説得力のある仮説検証ができる点も意識すべきだと感じた。 データ分析を業務にどう活かす? 今後、業務でデータ分析を行う際には、仮説立てから検証までのプロセスを意識的に組み込むようにしたい。現在取り組んでいる運転資本の改善についても、問題がどこにあるのか(Where)を仮説立てし、既存のデータから分析を行うようにする。そして、Whereが特定できた後には、なぜその問題が生じたのか(Why)の仮説を立て、その仮説を立証するための分析方法を検討するつもりだ。

データ・アナリティクス入門

仮説実践!即断で未来を掴む

効果測定は本当に? A/Bテストの実施により、短期間で効果測定が可能であることを実感しました。一方、単にデータ収集に時間をかけるだけでは、必ずしも問題解決には結びつかないということが分かりました。 分析時間は適切? 業務を進める際、初めはデータ分析から始めることが多い中、分析に時間をかけすぎる傾向があると感じています。一定量のデータが得られた段階で、迅速に仮説を設定し、追加の分析が必要かどうかを判断するか、実行フェーズに移行するかを見極めることが重要だと学びました。 行動開始のタイミングは? このコースを通じて、仮説に基づき行動に移すタイミングの大切さを再認識しました。今後は、データ分析に没頭しすぎず、適宜ストップしながら、仮説思考を軸にした実践的なアプローチを心がけたいと思います。

「分析 × 業務」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right