クリティカルシンキング入門

イシューから見えた成長の軌跡

適切なイシューの立て方は? 状況に合わせて適切なイシューを立てることの重要性を改めて実感しました。初めてケースを読んで分析してみたものの、非常に難しく、まだ十分に身についていないと感じました。今後、これまで学んだ知識をさらに活かせるよう、練習と実践を重ねていきたいと思います。 FAQタイトルはどう? また、FAQのタイトルづけについては、お客様の解決したい課題を問いかける形で整理することで、誰が見ても内容が分かりやすい記事に繋がると感じました。これにより、より具体的な問題解決を図るための記事作りを心がけたいと思います。 改善要望は何が課題? 開発への改善要望においては、ただ「やってほしいこと」を伝えるのではなく、解決したい課題(イシュー)からアプローチすることで、より的確な対応が期待できると学びました。 業務脱線はどう防ぐ? 業務インプットの際には、説明中に画面の別機能の話題や質問の補足などで脱線しがちなため、「何を伝えるべきか」を双方でしっかり認識しながら進めることが大切だと感じました。このような意識の共有が、目的を見失わずに効率的なインプットにつながると考えています。 記事作成の基本は? 今後、新たな記事を作成する際には、まずその機能が何のために存在するのかという基本的な問いから考え、記事の目的を明確にしていきたいと思います。また、来月から始まる業務インプットにおいても、開始前に「今日理解してほしいこと(イシュー)」を共有することで、より効果的な説明ができるよう努めたいと思います。 ケース分析で得る知見は? 最後に、ケース分析を通じて、イシューの立て方には慣れが必要であると痛感しました。自社の施策においても、なぜその取り組みが行われているのかを常に意識し、考える習慣を身につけることで、より深い理解と実践へとつなげていきたいと思います。

データ・アナリティクス入門

データで読み解く新たな発見の旅

代表値の意義は何? 平均値や中央値は、データを簡潔に理解するための「代表値」として便利です。これらはデータ全体をおおまかに把握するために使用されます。しかし、平均値はデータのばらつきや偏りを考慮しないため、標準偏差などの指標を使ってそのデータの分散を理解することも重要です。ヒストグラムはデータのばらつきをしっかり理解するのに役立ちますし、円グラフは構成要素が占める割合を視覚的に捉えるのに有効です。特に、データに際立ったばらつきがある場合は、その点に焦点を当てて分析することで問題を深堀りしやすくなります。 計算方法の違いは? 代表値の計算方法には、単純平均や加重平均、幾何平均、中央値など様々な種類があります。単純平均は全データの合計を個数で割ったもの、加重平均は各数値に重みを付けて算出するもの、幾何平均は冪根を使って計算します。特に平均値が極端な外れ値の影響を受けやすい場合には、中央値を使用するのが適しています。 標準偏差の役割は何? また、データの散らばりを理解するために標準偏差も重要な指標です。標準偏差は、データの各値との差の二乗の平均として計算され、データのばらつきを数値で示します。さらに、標準偏差の68%ルールや95%ルールは、データの大部分がどの範囲に収まるかを示し、これも理解を助けます。 業務整理にどう活かす? このような統計手法は、顧客の業務を整理する際に役立ちます。例えば、どの業務パターンを外れ値として除外すべきか、それがなぜ合理的なのかを論理的に説明できれば、業務要件をシンプルにするのに貢献します。加重平均を使用して、一部のケースでのみ発生する業務パターンを無視しても影響が小さいことを示したり、幾何平均で業務量の年次増加率を算出し、将来のシステム投資を提案することもできます。このようなシナリオが他にもないか、引き続き検討していきたいと思います。

データ・アナリティクス入門

仮説とデータで描く地方創生のヒント

仮説の見方は? ビジネスにおける仮説思考について、まず複数の仮説を同時に考え、それぞれに網羅性を持たせることが重要だと学びました。仮説を検証するためには、適切なデータを取得して比較する必要があり、その際には何を比較指標とするのかを意図的に選ぶことが求められます。たとえば、残業時間の増加要因として故障対応の増加が疑われる場合、単に故障件数だけでなく、1件あたりの対応時間も合わせて評価することが必要です。 情報収集の意図は? また、データ収集では意味のある対象から意見を聴取し、反論を排除するために必要な情報まで踏み込むことが重要です。さらに、実際のビジネス現場では、3Cや4Pといった分析の枠組みを活用して具体的な仮説を立てることで、解像度が高まり、個々の仕事に対する検証マインドや説得力が向上するほか、ビジネスのスピードや行動の制度が改善されることが分かりました。 過疎地域の課題は? 一方、過疎地域への移住促進においては、雇用の創出が鍵となります。人口が5000人以下の市町村では、産業の集積が不十分なため、相応の所得を得られる雇用を生み出すには、行政が主導して仕事づくりを進める必要があります。こうした雇用創出の一策として、総務省が制度化した仕組みがありますが、現状では本県で十分な成果が上がっていません。 事業展開のヒントは? この原因を明らかにするために、どのような業務に何人派遣しているか、また仕事の切り出し方についてデータを収集し、市町村担当者と情報を共有することが今後の事業展開のヒントになると感じました。現在、管内の1市町村で既に事業が展開されており、協力体制の可能性を検討しています。また、他の市町村でも類似の事業設立が検討されているため、たとえば損益分岐点を意識した事業計画の作成方法をケーススタディとして示し、過疎地域の課題解決につなげる取り組みを進めたいと考えています。

データ・アナリティクス入門

フレームワークで拓く学びの未来

3Cと4Pで何を探る? フレームワークの各視点を用いて仮説の可能性を広く検討することは非常に重要です。3C分析では、市場・顧客、競合、自社の観点から、誰が顧客であるか、市場の伸縮、競合の存在やその強さ、自社がどのようなサービスを提供し顧客のニーズを満たしているかを考察します。同様に、4P分析では製品、価格、場所、プロモーションの各要素に注目し、製品やサービスの質、価格設定、提供方法、そして効果的な販促方法について検討します。 戦略はどう立てる? フレームワークを用いて仮説を幅広く検討する姿勢は良好であり、各視点で具体的な議論に進めば理解がより深まります。例えば、3C分析から得られた仮説を基に具体的な戦略をどのように立案するか、4Pの各要素がどのように互いに影響しあっているかを考えることが課題となります。 事例分析は効果ある? ビジネスケースに実際にフレームワークを適用し、その有効性を確認することもおすすめです。引き続き学習を進めながら、現実の事例に即した検討をしてみてください。 医療M&Aの今後は? また、医療系M&A市場については、中小規模医療機関の承継ニーズの増大や医療費抑制政策の影響により、今後も活発な動きが予測されます。一方、競争の激化や規制リスクも存在するため、専門性の向上、デジタルトランスフォーメーションの推進、さらには事業領域の拡大が求められます。 AI・DXでどう変える? 具体的には、3C分析から得られた仮説をさらに充実させ、週次のミーティングで戦略の検討を行うことが考えられます。また、4Pの観点からAIを活用した企業価値評価による業務の効率化や情報発信の強化も有効です。加えて、DXの活用によるマッチング効率の向上、事業領域拡大に向けた人材育成と確保、さらには医療費抑制政策や規制強化への迅速で正確な情報収集の自動化も検討すべき課題と言えます。

マーケティング入門

顧客の真意で描く新業務の行方

顧客の本質を探る? 今回の講座を通じて、顧客の表面的な情報だけでなく、その深層にあるニーズや価値に着目する重要性を再認識しました。たとえば、STP分析や4Pなどのフレームワークを活用し、費用対効果を高めることができる一方で、最終的には顧客志向の追求が不可欠であると感じました。顧客の視点で考えなかった場合、どんなにプロモーションに力を入れても、売れ行きが伸び悩んだり、模倣されやすかったりするため、ヒット商品には結びつかないという印象を受けました。 業務移管の本質は? 現在の業務は社内の業務移管がメインとなっているため、移管元の担当者や現場スタッフを一種の顧客と捉え、そのニーズを正確に把握することが重要だと考えています。たとえば、移管前のヒアリング時には相手が抱える課題や求める解決策に注目し、新しいソリューションを提案する際には、イノベーションが広まる要因を意識することが、円滑な業務移管につながると感じました。 どの方針を実行? 具体的には、以下の方針で業務に取り組む予定です。 既存業務の見直しは? ■既存業務において 移管前後で、顧客にとっての痛みや利益につながるポイントがどこにあるかを確認し、痛みがある場合は改善策を検討する。 新規業務の挑戦は? ■新規業務において ソリューション提案時に、イノベーションの普及要因に基づいて、顧客目線でどのように受け取られるかを十分に考慮する. コミュニケーション改善は? ■日々の連絡業務・コミュニケーションにおいて 社内でも情報が過多になり、伝えたい内容が十分に伝わらないことがあるため、マーケティングの視点から以下の点を意識して工夫する。 ・訴求ポイントは2つまでに絞り、過度な情報量によって伝わりにくくならないようにする。 ・表現を丁寧に選び、相手の共感を得やすく、内容が伝わりやすいよう努める.

クリティカルシンキング入門

問い直しで切り拓く課題解決

本質はどこにあるの? 問題解決に取り組むにあたり、どこに問題の根源があるかを明らかにすることの重要性を学びました。たとえば「売上が上がっているのはなぜか」という問いから出発することで、課題の本質に迫る第一歩となると理解しました。 問いはどう変わる? また、最初に設定した問いが業務を進めるうちにぼやけたりずれたりするリスクがあるため、常に問い直す意識が必要であることも印象に残りました。この点は、今後の実務における課題解決に直結する重要なポイントです。 論理の骨組みは? さらに、「イシューを特定する」「論理の枠組みを構築する」「自らの主張を適切な根拠で支える」というピラミッドストラクチャーのステップを徹底することが、クリティカルシンキングの実践につながると感じました。 評価制度の課題は? 実務現場では問題を特定し、改善に結びつける場面が多々あります。現在の課題の一例として、評価制度の運用が挙げられます。昨年4月に人事制度を改定し、公平かつ公正な評価を目指して設計・運用を始めたものの、現場からは十分な納得感が得られていません。原因としては、以下のような点が考えられます。 ・評価制度の設計そのものに問題がある ・評価者のスキル不足 ・被評価者の制度に対する理解不足 ・制度説明の不足 具体策はどう組み立てる? この中から最も効果的な改善案を見出す必要があります。今回学んだ「本質的な課題を捉える問いの立て方」を活かし、まずは上期の評価フィードバックアンケートの結果を分析します。「なぜ納得感が得られないのか」という問いを軸にイシューを特定し、その後、ピラミッドストラクチャーを応用して論点を整理します。具体的な行動計画としては、次回の評価制度会議までにアンケート結果を分類し、主要な3つのイシューを抽出、並びに改善案の骨子を作成する予定です。

戦略思考入門

柔軟思考で読む経営の真髄

目標は何になる? まず、以下の3点を目標にする必要があります。第一に、物事の本質を捉え、目標達成に効果的な手段をシステマチックに考えること。次に、大局観を持ってバランスよく情報を収集・分析し、適切に考察すること。そして、フレームワークなどの型を習得することです。 どう分析する? 分析にあたっては、3C、SWOT、クロスSWOT、バリューチェーンなど、案件に応じた手法を選ぶと同時に、特定のフレームワークに固執しすぎない柔軟さも求められます。また、常に経営者の視点を持ち、ジレンマを恐れずに他社の意見に耳を傾ける姿勢が重要です。 どう機能を活かす? 製品開発においては、自分の担当機能に偏りがちな傾向を意識する必要があります。たとえば、機能テストではテスト内容に気を取られがちですが、本当に提供したい機能で何が求められているのかを見極めることが大切です。また、他機能との干渉が発生した場合、自己の機能を守るだけでなく、相手とのより良い落としどころを探ることが求められます。自分の機能のメリットを強調する際も、全体最適の視点で何が必要とされているのかを考えることが重要です。さらに、自グループの改善・発展のみに目を向けるのではなく、経営者の視点でそのグループに求められる役割を見定めること、そして、現状の取り組みに意義を見出せなくなったときには、チーム、会社、グループ、業界全体の視点で再評価することが求められます。 役割を再考すか? また、現在、関連企業に出向している中で、業務委託先という意識から自らの存在意義を否定的に捉えるメンバーが多い現状があります。そのため、会社単体で考えるのではなく、グループ全体や業界全体、さらには世界規模の視野で自分たちの役割がどのような影響を及ぼし、結果的に何を求められているのかについて、定期的にメンバーで話し合う機会を設けることが重要だと考えています。

データ・アナリティクス入門

問題解決へのアプローチを学ぶ

原因をどのように探る? 原因を探究することについて学びました。問題の原因を明らかにするためには、その問題に至るまでのプロセスを分解して考えるアプローチがあります。複数の解決策を用意し、それらを判断基準の重要度に基づいて根拠をもって絞り込むことが重要です。 データ分析の精度を高める方法は? 具体的なステップを踏んでデータを分析し、問題解決の精度を高める方法や、仮説を試しながらデータを収集し、より良い解決策に繋げる方法を学びました。これら両方のアプローチを組み合わせることで、データ分析の精度を一層高めることができます。例えば、「自分の残業時間」について考えてみると良い練習になります。 A/Bテストはどのように進める? 【A/Bテストについて】 A/Bテストとは、二つの施策を試し、比較するテストです。目標の設定から始まり、改善ポイントの仮説設計、実行までのステップを踏みます。優位なデータ数が集まるまで行い、その期間内で検証を行うことが重要です。目的と仮説を明確にし、シンプルで低コストかつ少ないリスクで運用できるようにすることが求められます。 残業問題をどのように解決する? 試しに「自身の残業時間」の多さについて考えてみました。棚卸できる業務をその場しのぎで抱えていたり、時間割やスケジュールの把握が疎かになっていたりと、整理すべき項目はいくつか見つかりました。複数の解決策を導くためには、まだ整理しなければならない複合的な原因が残っていますが、「有耶無耶」な部分を明確にすることで解決策が見えてきました。 今後の課題解決のステップは? 今後は、メンバー個別の面談や少人数のミーティングを通じて、現在の課題を一緒に洗い出し、原因を突き止めてみることを実践したいと考えています。そして、仮説を立て、複数の解決案をもって組織としての意思決定や問題解決に繋げていきます。

マーケティング入門

実践で磨くマーケティング力

レベルアップの理由は? オンライン学習の中で、講師の誘導を受けながら対象ターゲットや商品の機能的・情緒的価値について考察する機会があり、確実にレベルアップできたと実感しています。しかし、実際の業務に応用する場合、担当学部の広報戦略を再整理するためには、リサーチに必要な分析力、高校生という顧客層から本音を引き出すインタビュー力、企画書をまとめ上司を説得するプレゼンテーション能力、さらには周囲を巻き込んで企画を遂行する力など、各場面で求められる知識やスキルが不足していると感じています。より解像度高く顧客を理解し、良い提案を行うために、マーケティング的思考力を磨くとともに、周辺領域の学びを深めたいと考えています。 広報戦略で悩むのは? 広報戦略の見直しにあたっては、まず高校生が大学に求めるもの、各学部の学びに対する印象、学部選択や大学選択の決め手、重視するポイントなどのインサイトを把握し、市場全体を見渡した上でSTP分析を丁寧に進める必要があります。私は、4PのうちPromotionを担当しているため、イベントでは参加者が思わず情報を共有したくなる仕掛けを考え、自らの学びを活かしてメディアに広がりやすいコンテンツを発掘し、自然な波及効果によって志願者の増加につなげていきたいと考えています。 他者の視点は必要? また、企画書を作成する際に自分一人で思考を深めることは可能ですが、より質の高い提案を実現するためには他者の視点が不可欠です。まずは部内のキーマンと積極的にコミュニケーションを図り、各学部ごとに必要な分析を進められる体制を整えたいと思います。学んだ内容は単なる知識にとどまらず、実践を重ねることで使えるスキルへと昇華させることが肝心です。今後は、日常生活の中で気になる商品やサービスを題材に、学んだフレームワークを応用しながら自分自身の勉強を積み重ねていきたいと考えています。

クリティカルシンキング入門

切り口で明かす学びの本質

データはどう見切る? データの切り方によって、同じ数字でも見える課題や傾向が大きく変わることを実感しました。目的を明確にして「何を見たいのか」を意識した切り分けを行うことで、漠然と眺めるだけでは気づけなかった本質が浮かび上がり、無駄を省いた的確な分析が可能になると感じています。 MECE活用は有効? また、MECEの考え方を取り入れて整理することで、重複や見落としを防ぎ、全体像を正確に把握できるようになりました。その結果、何が起こっているのか、どこに手を打つべきかを論理的に説明でき、相手にも納得してもらいやすくなると学びました。 支援でどう効果発現? たとえば、新規事業の構想支援では、顧客層、提供価値、チャネル、収益構造などの視点で情報を整理することで、情報の抜けや重複を防ぎ、相手の納得感を得て意思決定をスムーズにする効果を実感しました。 組織開発の整理法は? また、組織開発の現場では、ヒアリングした内容を「構造」「風土」「スキル」「制度」といった切り口で整理することにより、課題の全体像や優先順位が明確になり、具体的な施策立案につながっています。 研修・講演はどう整理? さらに、研修や講演の場面でも、参加者にとって複雑なテーマを目的に沿って段階的に分解して提示することで、理解と納得を引き出す効果がありました。オンラインでのクライアントとの対話やレビューの際にも、現在の視点や抜け漏れ、そして本質を可視化することで、共通理解と納得感のある議論が進められると感じています。 学びを今後どう活かす? 今回学んだ「切り口の工夫」や「MECEの視点」は、事業開発や組織開発の現場で、初期の仮説立てからヒアリング結果の整理まで非常に役立つと実感しています。今後はこれらの手法を意識的に活用し、ツールを組み合わせながら日常業務に継続的に取り入れていきたいと思います。

データ・アナリティクス入門

一歩踏み出す再学習の軌跡

全体像を再確認? これまでの学習内容を振り返る中で、全体像を再確認できたと感じています。毎週の講義では、個々の演習を通じて内容を確認する機会がありましたが、連続性が不足していたため、先週と今週の学習でその点が整理された印象を受けました。また、従来のやり方や考え方にとらわれがちであることを学びの中で指摘され、再度学び直す必要性を実感しました。 特許情報の活用は? 環境分析においては、特許情報と非特許情報を組み合わせた手法のニーズが高まっていることから、今回の学習で得た知識や手法を取り入れていきたいと考えています。特に、分析は比較が前提であることや、「目的」の重要性について、チーム内での認識が揺らがないよう常に確認する点、そして仮説志向で同じパターンに偏りがないか、使用するデータが適切かを検証すること、さらにWhat-Where-When-Howの観点から確認と検証を行うことが必要です。 データ分析の課題は? これまでの業務を振り返ると、部署や立場が異なるチームでデータ分析に基づく活動を進める際、結果を重視した分析や、データから無理に仮説を導いたり、エイヤーで問題設定を行ったりしていたことに気付きました。今後は今回学習した流れをもとに、自らの手でハンドリングできるよう、実践の機会を積み重ねたいと思います。 問題解決の手順は? また、データ分析に限らず「問題解決のSTEP」を意識して業務に取り組むようになりました。分析を進める過程で、常に「目的」の認識に相違がないか確認し、スケールの大きい要求に対しては漠然とした要求を細分化し、より適切なデータ分析とアウトプットが実現できるよう努めたいと考えています。まずは、自分が担当するチームの開発テーマや製品の規模に合わせたデータ分析を実施し、その結果を第三者であるチームに説明することで、考え方や手順の定着を図っていきたいです。

戦略思考入門

賢い選択で効率化を目指す!

捨てる理由は何だろう? 今回のWEEKで学んだことは、「捨てる」という行為の重要性でした。特に、目的と数値的根拠(特に利益)を持って選別することが重要だと感じました。WEEKを通して感じたのは、物事の整理・分析をし、大局的な視点で差別化した戦略を立てることで、目的をもって選択(捨てる)するサイクルが大切だということです。 効果をどう見極める? ビジネスでは、投資対効果の高いものだけを選び続けるのが理想です。しかし、最初からすべて効果の高いものを作り出すのは難しいと実感しています。限られたリソースの中で新しい施策を試しながら、投資対効果の低いものを捨て、高いものを残すというサイクルを繰り返すべきだと明確になりました。何を目的に捨てるのかをしっかり考え、一度選択したことでも目的をもってやめることが重要だと感じました。 選別基準は何だろう? WEEK内の課題では、実際に企業へのアプローチ方法を考える設問を通じて、何を基準に取捨選択するかを理解しました。これまでは漠然とした時間や工数で判断していましたが、利益率で優先順位を判断することが重要だと学びました. 集約のポイントは? 仕事の集約に際しては、効率性の高い内容を優先的に集約していきたいと思います。また、実行して非効率だと判断した場合は、捨てる選択をする勇気を持つことも心掛けます。さらに、多回数の会議や定例業務を見直し、品質を上げたい業務に集中できるように整えたいと考えています. 効率向上の戦略は? まずは目の前の問題に取り組み、課題解決に活かしていきたいです。高品質化と効率化を実現するため、現時点での課題であるリソース不足に対処します。費用対効果の悪い業務を洗い出し、捨てるかどうかをリストアップし、その上で新たに生み出したリソースをどの業務に集中させるかを選択していきたいと思います.
AIコーチング導線バナー

「分析 × 業務」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right