クリティカルシンキング入門

多視点で見抜く真の課題

表面だけで見抜ける? 表面的な数字だけで判断すると、真の課題を見落とす恐れがあります。一つの切り口に固執せず、複数の視点から分析を行うことが重要です。また、分析を行う際は、分解方法がMECEになっているかどうかを意識し、層別分解、変数分解、プロセス分解などの手法を活用することが求められます。 多角分析は効果的? 例えば、管轄する組織の毎月の営業成績を分析する場合、Excel上の組織ごとの数字だけに目を向けるのではなく、様々な切り口や増減率といった要素を加えて事象全体を把握します。これにより、真の課題への特定がよりスムーズになるでしょう。 確認作業は万全? さらに、データ分析の際は、営業所、担当者、エリア、製品といった切り口がMECEになっているかを常に確認し、率などの加工を行うことで、現れている事象を正確に捉えることが大切です。第三者の視点によるチェックも忘れずに行い、より正確な分析を心がけることが必要です。

データ・アナリティクス入門

学生退学率を下げるための分析法を学ぶ

比較で分析を深めるには? 「分析は比較」という考え方が非常に印象に残りました。単に分析対象を見るだけでなく、他と比較することでその状態を分かりやすく確認できます。また、比較の際に「目的」や「分析に必要な要素」を考慮することで、ぶれない分析が可能になると学びました。 学生の退学率にどう対策する? 私は大学で勤務しており、学生データの分析を頻繁に行っています。特に「入学した学生の退学率をどのように防ぐか」という大きな課題が常にあります。この問題を解決するためには、問題を適切に切り分けて、それに対する適切な施策や提案を行う必要があると感じました。 退学率低下の具体策は? 具体的には、「学生の退学率を低下させる」といった目標が定まっているので、まずはその問題を要素ごとに分けて考えます。例えば、退学率の過去の推移を確認し、変動が大学内部の問題によるものなのか、それとも外部要因によるものなのかを区別することから始めます。

クリティカルシンキング入門

データ分析の新しい視点で業務改善へ

グラフを活用したデータ分析の重要性 分析においては、数字だけを見ずにグラフにするなど、視点を変えることが重要です。絶対値だけでなく比率などの相対値も分析し、複数の区切り方や切り口でデータを分解したうえで、それらを複合させて検討する必要があります。これらを怠ると、正しい課題や仮説にたどり着かない可能性が高くなります。 新たな視点の必要性とは? 私は、自身の業務において組織や顧客のデータから傾向や課題を分析する際に、複数の区切り方や切り口を見直していないことがあると感じています。そのため、これまでの区切り方や切り口以外に、何か新しい視点がないかを改めて考えてみたいと思います。 定例会議での効果的な課題分析法 現在、月に一度の定例会議で自社と取引先企業との間で課題の分析と対応策を議論しています。分析は自社で行うため、データの区切り方や切り口、グラフの見せ方を再検討し、仮説を誤らないように資料全体を見直すことが必要です。

データ・アナリティクス入門

データ分析で差を生み出す4つの秘訣

顧客分析で何を重視する? 顧客分析や市場分析を行う際、まず「分析とは比較すること」であり、目標と仮説をきちんと立てることが重要だと学びました。定性的な分析に偏りがちで説得力を欠くことがあるため、尺度や数値の性質を正しく理解して、しっかりと分析・評価・考察を行いたいと思います。 他社比較で成功するには? 今後、様々な施策を行う時に他社比較やABテストを実施する機会があると思われますが、その際には、「比較」「目的」「仮説」「考察」を確実に具現化してから各数値の分析・評価を行うことに努めたいと考えています。メンバーや上層部にも十分な納得感を持って進められるようにしたいです。 数値分析の心構えは? そこで、まずは様々な数値を扱う際に「比較対象の妥当性」「目的」「仮説」「考察」の4つを常に念頭に置いて仕事に取り掛かるよう心がけています。また、分析方法についても数値の性質を見極めつつ、適切に分析・評価を行いたいと考えています。

データ・アナリティクス入門

アウトプットが照らす分析の道

データ収集時の注意点は? データ収集の段階で、最終的なアウトプットのイメージを明確に持つことが非常に大切だと改めて実感しました。演習を通じ、ただ漠然とデータを分析するのではなく、何を理解したいのか、どのような知見が得られるのかを意識しながら分析する必要があると感じています。 仮説の重要性は? これまでは業務上、データを加工して気になる情報が見つかればその伝え方を考えるという流れで進めていたため、分析を行う際には、まず仮説とアウトプットのイメージを持つことが質の向上に大きな差を生むのだと実感しました。 質向上への取り組みは? この経験をもとに、売上の変動分析においても、従来の手当たり次第の手法から脱却し、しっかりとしたアウトプットのイメージを持って取り組んでいきたいと考えています。また、以前「分析がわかりにくい」という指摘を受けたこともあり、優れた分析手法を取り入れることで、さらなる質の向上を目指します。

クリティカルシンキング入門

イシュー共有で広がる学びの輪

イシュー分析の意味は? Week 1の学びを振り返る中で、イシューの分析や分かりやすい説明の大切さを再確認することができました。議論を進める際にイシューの共有が重要であるという点を改めて認識でき、良い振り返りとなりました。 部下と意思決定の秘訣は? プロジェクトの進行において部下と共に意思決定を行う場面も多く、どこにイシューがあるのかを明確にし、必要な分析が実施されているかを意識することが相手の説明の正確さを判断する上で役立つと感じました。自分が説明を行う際も、相手の理解を促すためにどのような工夫ができるかを学ぶことができました。 改善へ向けた次の一歩は? 今後は、自分が実践した説明や分析について振り返り、Week 1で学んだ観点からうまくいかなかった点を整理して改善を図っていきたいと思います。また、一人だけの視点に偏らないよう、同じ講義を受講している仲間と定期的に意見交換を行い、より良い成果を目指していきます。

リーダーシップ・キャリアビジョン入門

リーダーシップの真髄を学びチーム力向上へ

部下理解のアプローチとは? 自身の学びを整理することができました。 WEEK1では、部下の行動に対ししっかり理解し評価したいと考えていましたが、部下の人となりを理解するアプローチを考えていなかったことに気づきました。さらに、公平感を保つために、部下によってリーダー行動を変えたくないと考えていたことが間違いであったと気づきました。 効果的なチーム育成法は? 現在のグループの部下に対して、改めて「環境要因」と「部下の適合要因」を整理し、部下の理解に活用したいと思います。そして、自身が望むアウトプットを達成できていない部下に対して、的確なリーダー行動を行うことで、部下の能力向上およびチーム力の向上を図りたいと思います。部下とよりWINWINな関係を築くために、今回学んだことを実践したいと思います。 フィードバックで成長を促す また、半年ごとに2WAYでフィードバックを受け、リーダー行動を改善していきたいと思います。

データ・アナリティクス入門

仮説と比較で見える成長の軌跡

A/Bテストの見直しは? 業務において、あまり考えずにA/Bテストを実施していたことに気づきました。今後は、企画段階からバイアスを取り除く方法を模索し、比較のためのベースラインを整えることに留意したいと考えています。仮説に基づいてどのように探索を進めるかが鍵となり、改めて分析は「比較」が非常に重要であると実感しました。 フレームワーク活用法は? また、これまで学んだフレームワークや考え方(3C、4Pなど)を積極的に取り入れていきたいと思います。習得がすぐにはいかなくても、慣れるまで継続して実践し、しっかりと身に着けていく所存です。 データ分析はどう行う? さらに、A/Bテストを実施する際には、可能な限りランダマイズすることや、比較に必要なサンプル数や実施期間を十分に検討することが重要だと感じました。分析時にも、どのような背景や手法でデータが収集されたのかを意識しながら、より正確な評価を行えるよう努めていきます。

クリティカルシンキング入門

MECEで広がる分析の世界

分析計画の狙いは? MECEを意識して分析計画を立てることの重要性について学びました。分析はまず大局的な視点から始めることが大切です。傾向を掴んだとしても、それが必ずしも正しいとは限りません。そのため、正確性を確認するために、必要に応じてさらに詳細に分解する必要があると感じています。 分解の意味は何? 実際に行っているデータ分析について考えたところ、MECEを満たしているようではあったものの、それを意識的に行うことはできていませんでした。分析のスタートポイントとして分解を意識して、分析計画を立てる必要があると強く感じました。 感覚分析の問題点は? これまでの分析は感覚的に行っていた部分がありました。分析計画は立てていましたが、分解に着目するということが不足していました。解がスタート地点であることを学んだので、今後は分析計画の段階で、MECEなど今回学んだロジックに沿って計画が立てられているかを確認していきます。

データ・アナリティクス入門

比較で見つけた戦略のヒント

同条件で比較する? 分析とは、同じ条件下での比較を行うことだと思います。たとえば、「Apple to Apple」の視点で比較を行うことで、分析の目的やゴールが明確になり、結果の精度も向上します。また、分析を進める際は、仮説を立てることで、目的外の迷いに陥らずに進められると感じています。 ブランディングはどう? 現在、私はプロダクト開発とコンテンツ企画・運営に携わっており、いずれも競合が存在する中で、自社のブランディング戦略を考える必要があります。ただ、現状ではプロジェクトオーナーの感覚や経験に頼る部分があり、より現実的かつ客観的な視点を取り入れる余地があると感じました。 課題整理は進んでる? そこで、まずは各プロジェクトの目的とゴールを再整理し、現時点での課題を明確にすることが重要だと考えています。その上で、適切なフレームワークやツールを活用した分析を行い、より精度の高い戦略策定を目指していきたいと思います。

データ・アナリティクス入門

全体をとらえるデータの物語

全体像と仮説の関係は? データ分析に取り組む際、単にあらゆる情報をむやみに収集するのではなく、全体のストーリーを大切にすることが印象に残りました。アウトプットのイメージを持ってデータ収集を行うと、目的に沿った情報が得やすく、分析の方向性も明確になります。また、仮説を立てる際には、フレームワークを活用することで多角的な視点から仮説を検討できますが、その検証に必要なデータは個々のアプローチによって異なるため、どの視点から何を分析するのか、目的を明確にすることが重要であると感じました。 データ収集のポイントは? 現場でデータを収集する方法として、アンケート調査やヒアリングが主な手法として挙げられます。アンケート項目を作成する際には、その趣旨を明確にし、複数の仮説と全体のストーリーに沿った質問を工夫することが求められます。こうした意識を持って、目的に合った質問項目を作成し、データ収集に臨むことが重要であると考えています。

クリティカルシンキング入門

5W1Hで切り拓く新規事業の鍵

--- MECEを意識する重要性 切り口および分析について、常にMECE(Mutually Exclusive, Collectively Exhaustive)を意識して分析することの重要性を整理することができました。特に、導入部分での分析項目の洗い出しにおいて、いかに漏れなく切り口を探るかが検証の鍵であると理解しました。 新規事業企画での試み 現在、新規事業企画を行う部署に所属しており、偏見を持たずに課題を確認し、様々な視点で洗い出しと検証を行いたいと考えています。特に、5W1Hを使用して漏れなく確認し、価値ある人やモノを創出すべきかを見出したいと考えています。 5W1Hを活用すると? 月並みではありますが、5W1Hをしっかり検討しきったかを常に自問自答したいと考えています。分析時はもちろんのこと、客先にヒアリングを行う際にも、どの情報が不足しているかをフレームに照らし合わせて考えたいと思います。 ---

「行う」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right