データ・アナリティクス入門

具体を引き出す対話の魔法

目的をどう明確化? 分析の目的を明確にすることの重要性を実感しました。データを活用する相手がどのような目的で情報を求めているのか、コミュニケーションを通して具体的に確認する必要があります。しかし、実際に会話をすると、目的が漠然としていたり、具体的な内容が伝えられないケースが多く見受けられました。そのため、抽象的な要素を具体的な内容として引き出すヒアリング力が非常に重要だと感じています。この過程で、仮説設定や比較対象の選定がより明確になり、全体の分析基準がしっかりと定まると考えます。 営業データは何を示す? また、営業活動においては、提供するデータがますます重要になっています。特に、自社製品の導入理由を明確に説明することが求められる中、競合他社との比較において自社製品を選ぶ根拠を明確なデータで示すことが必要です。営業と意見を共有しながら、データ活用の目的を具体的に明確化し、客観的な視点を保った説得力のあるデータ提供を行うことで、導入率の向上につなげたいと考えています。

データ・アナリティクス入門

小さな一歩から見える大きな未来

目的と対象は? データ分析を行う際は、まず対象を明確にし、何を比較するのか、どのような目的で分析を進めるのかをはっきりさせることが大切です。やみくもに作業を進めるのではなく、解決すべき問題を洗い出し、最終的にどのようなアウトプットを目指すのかを事前にイメージしておく必要があります。 計画の進め方は? 初めは大まかな分析から始め、そこから徐々に細部にわたる分析へと進めていくと、全体像を捉えながらも、必要な部分に着眼できるため効果的です。データの収集や加工の前に、分析のロードマップを描いて進めると、全体の流れが整理され、分析結果の精度向上につながります。 他部署での連携は? 他部署と共同でデータ分析を実施する場合は、問題点やアウトプットのイメージについて十分なコミュニケーションを取り、上流工程での認識合わせを中心に進めることが重要です。また、学んだ各種のフレームワークやグラフの表現方法を意識的に活用することで、知識の定着や成果の説得力を高める努力をしています。

データ・アナリティクス入門

仮説とデータで見える未来

仮説思考はなぜ必要? 仮説思考の大切さを改めて実感しました。日々得られるファクトに対して「なぜ?」や「どうすれば良いか?」と疑問を持つ中で、あらかじめ仮説を設定することで業務上の疑問点や関心事に対し、より具体的なアプローチが可能となり、結果として業務の精度が上がると感じました。 データの活かし方は? また、データ収集においても、ただ数多くの情報を集めるのではなく、データの特性を十分に理解した上で、絞り込んだ活用を行う必要性を感じました。実績の分析に際しては、例えば「この時期だから売上が伸びないのか」や「この季節だから売り上げが良いのか」といった視点で、状況を整理することが有効でした。 記録の意義は? さらに、手元にあるデータやメモを活用し、気になった点や疑問点を記録しておくことは、仮説の検証や業務改善に直結する重要なプロセスであると感じました。日々その記録を見返しながら自問自答を繰り返すことで、自分なりの解を持ち、分析を重ねる姿勢が身に付いたと思います。

データ・アナリティクス入門

仮説と数字で描く未来

どの要因を重視する? より良い分析を行うためには、単に手法を実施するのではなく、実態だけでなく、事象の背景にある要因に目を向け、仮説の設定に力を入れることが重要です。たとえば、期間、事業部、他社との比較や、売上を数量と単価といった要素に分解して、その関係性を明確にすることが求められます。 どの数値に注目すべき? 現在、次期中期経営計画策定に向け、社内外の事業環境および自社の事業構造の把握に努めています。中期的な戦略を練る上では数値が非常に重要であるため、その分析結果をもとに、部内の若手社員と見立てを共有し、意見交換を進めることを目指しています。 仮説検証、どう進める? また、これまで手薄だった社内データの分析についても、各種検証を重ねた結果、実施可能な体制が整いつつあります。データ分析にあたっては、仮説設定を重視し、エクセルのピボットテーブルや統計ツール、可視化ツールを活用しながら、複数のメンバーで議論を交わし、一定の結論に導くプロセスを進めています。

データ・アナリティクス入門

数字が語る学びの秘話

代表値の使い方は? 代表値の計算方法として、単純平均、加重平均、幾何平均、中央値のアプローチがあることを再確認しました。日常の業務では状況に応じて使い分けているものの、特に幾何平均は実際に計算する経験がなく、大変勉強になりました。また、データのばらつきを捉えるための標準偏差を使った比較も初めて試み、今後の分析に役立てたいと感じました。 分析結果はどう活かす? 研修成績やサーベイ結果の推移やばらつきを把握し、傾向や特徴を見出すために、今回学んだ代表値の計算方法やビジュアライゼーションが非常に有効だと考えます。まずは、データを確認する前に、点数が上昇している場合と下降している場合の仮説を立て、その上で属性ごとに単純平均を用いて比較を行います。さらに、人事制度などとの関連付けを行う際には、特定の部署の比重を増やす加重平均や、前々回分のデータを反映した幾何平均を導入することで、目的に合った多角的なアプローチを実現し、仮説の検証や次の分析ステップへとつなげていきます。

クリティカルシンキング入門

学びを深める文章力の身につけ方

文章を書く難しさとは? 文章を書くという行為は、非常に難しいものです。主語と述語を明確にし、順序立てて主張と根拠を組み立てなければ、相手に伝わりません。また、提案を行う際には、その相手や背景によって適切な根拠を選ぶ必要があるため、「誰に何を伝えたいのか」を自分の思考を整理してから文章を書くことが重要です。 コミュニケーションの課題は? 組織で仕事をしている以上、引き継ぎ、共有、報告など、あらゆる場面でメッセージを用います。相手にうまく伝わらないことで、聞き直しの手間が発生したり、自分の意図と異なる行動を相手が取るなどのデメリットが生じます。そのため、正確に伝える力を磨くことが必要です。 見直しの重要性とは? ピラミッド構造のように、主張を先にしてから根拠を述べる順序で文章を書くことを習慣化していきます。しかし、自分ではできたつもりでも、理解しやすかったかどうかは受け手次第です。そこで、同僚に所感を求めるなど、双方向で確認することで、伝える力を養いたいです。

リーダーシップ・キャリアビジョン入門

支援で切り拓く未来のキャリア

任せ方はどう見直す? これまでは、仕事を任せた相手のモチベーションやキャリアパスを具体的に考慮する機会があまりありませんでした。今後は、自分の考えに取り入れるとともに、人事部などと連携し、会社全体の体制に反映させていきたいと考えています。 依頼の先はどう広がる? また、同僚や若手に資料作成などのタスクを依頼し、アドバイスを行う際には、単に仕事を円滑に進めるだけではなく、その先のキャリアパスも意識して取り組むことが重要だと感じています。このように相手の将来を見据えて支援することで、組織全体が活性化し、自分自身の評価も向上するのではないかと思います。 経験が未来を作る? さらに、日頃から同僚や若手のバックグラウンドを把握するよう努めており、依頼した仕事の完遂が相手の経験としてプラスに働くと考えています。これにより、自然と次のステップとしてどのような選択肢があるのかが見えてくるでしょう。こうしたプロセスを会社の体制に組み込むことも視野に入れていきたいと思います。

データ・アナリティクス入門

データと仮説で切り拓く未来

原因は何でしょう? 問題を解決するためには、原因をプロセスごとに分解して明らかにする方法が効果的だと実感しました。広告にかかる費用と表示回数だけで費用対効果を計算しても、課題解決には至りません。しかし、クリック数や申し込み数といったデータを加えて各割合を算出することで、具体的な解決策のヒントを得ることができました。 A/Bテストはどう? また、業務では主に定量分析や可視化を中心に行っているため、これまで触れる機会の少なかったwebマーケティングで活用されるA/Bテストについて学べたことは非常に新鮮でした。 仮説、どう作る? さらに、日々の業務でデータ分析や問題解決を行う際、どうしても過去の経験や周囲の意見に基づくストーリーに頼ってしまい、データ活用が十分にできていなかったことに気付きました。今後は、「What」「Where」「Why」「How」の各ステップや様々なフレームワークを活用した仮説の立案を取り入れ、より効果的な解決策を模索していきたいと思います。

データ・アナリティクス入門

比較と検証で切り拓く未来

分析の見極めポイントは? Week1を振り返って、「分析は比較なり」という言葉が強く印象に残りました。正確な分析を行うために守るべき要点を改めて認識するとともに、仮説と検証を繰り返すことの重要さを実感しました。 業務での分析とは? 実際の業務シーンでは、以下のような場面でデータ分析の手法を活用しています。病院のデジタル推進におけるデータ分析、サーバ性能やトラブル発生時の問題解決、新サービス導入時のサーバ負荷試験に関する見解、また、LINEや無呼吸ラボ、近隣検索、PCPへのファネル分析、アクセス数やページビューの分析など、さまざまな事例に取り組んでいます。 分析習慣の秘訣は? 日々の業務においては、勘や経験則だけに頼ることなく、データ分析に基づいた意思決定を行う習慣を身につけることが重要だと感じています。問題が発生した際には、What、Where、Why、Howの視点で現状を整理し、的確な対策を講じるために、仮説と検証を繰り返す姿勢を大切にしていきたいです。

クリティカルシンキング入門

コミュニケーション改善の鍵を見つけた!

あいまいな表現はどうして? 実際の業務では、特に気心の知れたメンバーとの会話で、主語を省略したり「あれ」「これ」といった曖昧な表現を使ってしまうことがよくあります。そのため、述語との関係が疎かになっていることもあります。同じ内容でも、正確な言葉を用い、ロジックツリーに基づいた順序で説明することが大切だと痛感しました。これを日常的に行う必要があると感じています。 伝えるスキルはどう? 口頭での報告や連絡、相談といったコミュニケーションだけでなく、プレゼンテーションや説明、さらにメールやチャットなど、仕事上の情報交換のあらゆる場面でこのスキルを活用できると思います。特定の場面に限定せず、常に意識的に訓練を積むことが、習得のカギだと気づきました。 文章の工夫は何? 日常業務の中でのメールやチャットでも、主語と述語、その関係性を意識して文章を作成することが大切です。また、対面で説明する場面では、ロジックツリーを書いて、その順序に沿って話すよう心掛けたいと思います。

クリティカルシンキング入門

ナノ単科で発見!学びの楽しさ

肉付けを行う際の視点は? 文章の肉付けを行う際には、主語と述語を正確に把握することが重要です。複数の視点を取り入れることで、相手にとってよりわかりやすい文章に仕上がります。また、文章全体を俯瞰することも大切です。 進捗報告での重要ポイント 工場現場や研究開発の進捗報告においては、まず最終的なゴールとその実施者を明確にすることが求められます。その上で、時間感覚やコストに関する情報を付け加えることで報告を充実させます。これにより、期待される効果がより明確になります。また、報告を受ける相手が求めている情報を整理することも忘れてはなりません。 業務報告で意識すべきことは? 1Qの業務報告に向けては、第二問で記載した内容を基に報告の準備を進めていきます。現場のメンバーに対しては、納期を明確にすることが重要です。さらに、達成目標を示し、それをピラミッドストラクチャーで整理することで、自分だけでなく、実務を行うメンバーにも理解しやすく伝わると考えています。

データ・アナリティクス入門

効果的な分析方法を学び成功へ一歩前進

効果的な分析手法を学ぶには? 分析を行う際に、ただ漠然と進めるのではなく、ステップを考え、ロジックツリーを用いることやMECEを意識した切り分け方を学んだおかげで、より効果的な分析ができるようになった。これからは慣れに頼らず、きちんと目標を持って分析を行っていきたい。 売上向上への試行錯誤とは? 売上が伸び悩む中で様々な試行錯誤を続けているが、前回学んだ「目的」「仮説」「数字の性質」に加えて、今回の「ステップ思考」「ロジックツリーでの展開」「MECEを意識した切り分け」を活用し、過去の数値分析を再度行いたいと思う。 新規施策提案のためには? 新規施策を提案する際には、目標となる部分と仮説、そしてそれがステップ思考になっているか確認し、ロジックツリーを実際に作成して客観性があるかどうかを見極める。また、MECEを意識することで、意味のある分析・評価に繋がっているかどうかを自問自答していきたい。そして、その提案をメンバーや上層部に向けて発信していく予定だ。

「行う」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right