データ・アナリティクス入門

卒業生もお宝!データ分析で見えた新視点

ファネル分析の新たな視点 最後に学んだファネル/ダブルファネル分析は、とても印象に残りました。感覚的にファネル分析は理解しており、業務で使っていたのですが、購入後の顧客の動きを分析するためにダブルファネル分析が効果的であることが、新たな知識となりました。 卒業生追跡の重要性とは? 私は大学職員として、在学生の動きを分析することがまず重要ですが、卒業後の卒業生の動きを追いかけることも同様に重要だと感じました。大学の評価を高めるためには、卒業生が社会で自分の大学をどのようにアピールしてくれるかが今後の鍵となるのです。 意見収集体制の構築方法 在学生だけでなく、卒業生の連絡先もストックしておき、大学に対する意見やフィードバックを常に受け取れる関係を築いていきたいと思います。また、大学内だけでなく、外部の意見も蓄積してデータ化する体制を構築する必要があると考えています。

データ・アナリティクス入門

比較で見つける学びのヒント

比較はなぜ大切? 分析において、比較が本質であることを再認識しました。何かと比較することで評価が可能になり、比較しなければ正確な評価は得られないと実感しました。 同条件比較って? また、評価の際には同一条件、すなわち「Apple to Apple」の比較を意識する重要性も感じました。分析の第一歩は仮説の立案から始まり、その仮説を検証するために、何と何を比較すべきかを明確にする点が印象的でした。 業務分析の極意は? 日々の業務では、自分自身のデータ分析はもちろん、他のメンバーや関係者が行った分析も、このプログラムで学んだ体系化された論点を用いて見極め、改善点を具体的に指摘できるよう努めたいと思います。 爆撃機から学ぶ? さらに、学習事例として紹介された爆撃機の事例は、一見とらえにくい対象にどのように着目し、考察を展開するかについて大変興味深く感じました。

クリティカルシンキング入門

図解が生む気づきと共感

図解の活用はどう? 課題の全体像が漏れなく把握できるよう、図解を活用する点は非常に有用だと感じます。普段の口頭での対話に加え、ホワイトボードを用いることで共通の理解を深め、会議がスムーズに進む印象を受けました。 クライアントの視点は? また、クライアントとの課題整理にも図解は役立ちます。さまざまな課題が出た際に全ての視点が網羅されているか検討するのに適しており、定量的な情報を示す際にも理解が容易になると感じました。図解することで、クライアントが見落としている可能性のある視点にも、指摘するのではなく一緒に気づくアプローチが取れると考えています。 提案手法はどう? 実際、クライアントへの提案の場面では、この考え方を取り入れてみようと思います。事前に多角的な切り口で準備を行い、セッション中に図を用いて書き出しながら共に理解を深める方法を実践したいと考えています。

データ・アナリティクス入門

数字が語る成功への道

分析と代表値の使い道は? 分析の基本プロセスや代表値の種類について、非常にしっかり理解できています。実際の案件分析やKPIの見直しにおいて、売上、利益、譲渡額、成約期間など、各データのばらつきに応じて単純平均、加重平均、中央値などの代表値を使い分けることができています。また、ばらつきや2SDルールなども活用し、最適な視点からデータを分析している点が印象的です。 説明とKPIの関係は? 現状、データ分析の結果に基づいてKPIが作成・発信されているため、今後はその数値が目標となる理由を、メンバーがより納得できる図表を用いて可視化し、説明できるようにしていきたいと考えています。同時に、分析のプロセスにおいて、目的の明確化、仮説の設定、データ収集、そして仮説(ストーリー)の検証の手順を、メンバーが理解しながら適宜視点とアプローチを選択できるよう指導していく所存です。

データ・アナリティクス入門

数字が語る学びの軌跡

なぜ統計手法を重視? 平均値だけでは数値のばらつきを捉えきれないと実感しました。仮説を立てる際、標準偏差や中央値など多様な統計手法を併用することが大切だと改めて感じます。また、データをビジュアル化することで仮説の精度が向上し、分析のアプローチ自体も変わり得る点が印象的でした。 どう評価を改善? 今回のコンテンツ運用アンケートでは、これまで尖った意見や単一の数値に頼った評価に偏っていた部分を改善するヒントを得ました。今後は、仮説を明確に立てた上で、比較や傾向を意識した深いデータ分析を心がけていきたいと思います。 整理で何が見える? さらに、既に収集しているアンケートデータの整理を実施し、情報の過不足を確認する予定です。初めてのデータビジュアル化にも挑戦し、その結果は次回以降の運用改善のための知見として、適切な知識管理ツールで整理していきます。

データ・アナリティクス入門

小さな実験で見えた業務改善

A/B分析はどう見る? A/B分析の手法について理解が深まりました。分析時の基本として、環境要素を一致させることや、複数パターンの場合には確認したい要素を絞り込むなど、判定材料の吟味が重要であると感じました。ただし、効果や判定は比較的しやすい印象を受けています。 UI選択はどうする? 現在、課内の業務案内掲示板の改修を進めており、どちらのUIが確認しやすいか、また問い合わせ件数が減少するかを試す計画です。ただし、使用するツールが決まっているため、パターンが限定される点と、同時に開示できないジレンマを感じています。 引継ぎはどう進める? 明日から業務引き継ぎ用のマニュアル作成が始まるため、まずは小規模かつ迷惑のかからないメンバーでトライアルを実施します。迅速に変更できる体制を整えることで、双方の良い点と不得意な点の判定を容易にすることが狙いです。

戦略思考入門

見失いがちな大切な本質

本当に大切なのは? 全体の振り返りで、自分が一番印象に残っているのは「案外忘れているものがある」という事実に気づかされたことです。日常の業務に追われると、本当に重要なことが見えなくなりがちであると実感しました。 捨てる選択は正解? また、多くの方がDay4のテーマで「捨てる」という答えを選んでいたことも印象に残りました。私自身も、普段のルーティンに没頭してしまい、無駄な作業がないか振り返ってみる必要を感じさせられました。 基本に戻る理由は? さらに、フレームワークの基本を押さえる重要性を改めて認識しました。状況が複雑になるほど、基本に立ち返ることが大切だと感じます。特に3C、PEST、SWOTなどの手法は、実施するタイミングによって結果が異なるため、これらを基にシナリオプランニングを行うことで、今後の方向性が明確になってくると考えています。

データ・アナリティクス入門

何から手をつける?4STEPで解決

何から手をつける? たくさんの問題に直面した場合、何から手をつけるべきか悩むことがよくあります。そのような状況で、今回学習した「問題解決のステップ」がとても印象に残りました。具体的には、「what」で直面している課題や状況を明確にし、「where」で問題の個所を絞り込み、「why」で原因をしっかり分析し、最後に「how」で原因に応じた有効な解決策を考えるという流れです。 どう整理して進む? このステップを活用することで、目についた情報に振り回されて時間がかかってしまったり、都合の良い情報ばかりを集めて「決め打ち」に陥ったりするリスクを回避できると感じました。今後、問題に直面したときは、まず「what」で問題の本質を把握し、次に「where」「why」「how」の順で整理していくことで、よりロジカルに問題解決に取り組んでいきたいと思います。

データ・アナリティクス入門

数値で見抜く!漏れゼロの採用戦略

どの段階で離脱? ファネル分析を通して、どの段階で対象が離脱しているかを可視化できるため、問題点を明確に捉えることができると感じました。ただ単に結果を眺めるのではなく、途中段階で状況を確認し、各プロセスを適切に設定することが重要だと思います。 採用選定のポイントは? また、採用活動においては、採用エージェントや採用プラットフォームの選定に活用できる点が印象的でした。まず、人材会社のユーザー数、直近3カ月以内のアクティブ数、採用職種の登録人数、採用希望年代など、段階的に絞り込むことで、対象となる母数の大きさを把握する手法が有効だと感じました。 母数比較で選定は? さらに、それぞれの採用エージェントやプラットフォームを運営する企業ごとに同様の絞り込みを行い、母数を比較することで、採用活動に最も適した人材会社を選択できると実感しました。

戦略思考入門

本質を掴む経営戦略のコツ

定石をどう捉える? ビジネスの定石を正しく理解し活用することの大切さが印象に残りました。漠然とした知識だけで判断してしまわず、本質をしっかりと捉える姿勢が必要だと感じています。 適切な打ち手は? また、単に総生産数を増やすだけでは規模の経済が働くかどうかは不明であり、自社の状況に合わせた適切な打ち手を検討する必要があるという点も重要だと思いました。 大数字の罠は? 技術開発提案書を作成する際、年間や生涯の生産数といった大きな数字を用いていましたが、規模の不経済が生じていないか、また工場の生産状況を踏まえた上で、より効果的な施策を考える必要性を強く感じます。 情報の真偽は? さらに、範囲の経済性などの要素も十分に考慮し、単なる定石に頼るのではなく、部分的な情報だけに流されずに事実の本質を見極めることが求められていると実感しました。

データ・アナリティクス入門

見せ方で広がる学びの世界

数値の見せ方はどう? データの加工によって結果から導かれる解釈が変わる点に非常に興味を持ちました。たとえば、平均や中央値、グラフの種類といった数値の見せ方によって、分析結果の印象が大きく変わることを実感しています。一方で、これらは作成者の意図が反映されている可能性もあるため、単一の数値だけでなく、複数のデータを総合して考察する必要があると学びました。加えて、加重平均、幾何平均、標準偏差など、値の求め方の違いを明確に理解し、使いこなせるようになりたいと感じました。 アラートの傾向はどう? また、これまでに発生したアラートの種類や頻度をまとめ、発生パターンを分析・予測できるのではないかとも考えています。どのタイミングでアラートが発生するかといった傾向を把握することで、対策の立案がしやすくなり、結果としてアラートの抑止につながると期待できます。

マーケティング入門

ビジネスの基本原則に目覚める学びの旅

ナノ単科受講の良さとは? ナノ単科の受講を通じて、ビジネスに関する知識を深めることができました。授業内容は非常に充実しており、具体例を交えた説明が理解を助けました。また、オンライン形式であるため、自分のペースで学習を進めることができた点も大変良かったです。 印象に残った学びは? 特に、ビジネスの基本原則や戦略の立て方について学んだことが印象的でした。これらの知識は、今後の仕事において非常に役立つと感じています。また、他の受講生とのディスカッションを通じて、多様な視点を得ることができたのも大変有意義でした。 教材がもたらす学習支援 教材内容は適切に構成されており、情報の具体性と明瞭さが保たれていました。そのため、無理なく内容を理解することができました。今後もこのような学習機会を活用して、さらなるスキルアップを目指していきたいと思います。

「印象」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right