データ・アナリティクス入門

平均値の裏側に潜む本当のデータを読み解く

平均値の理解とは何か? データ分析において、平均値という言葉に惑わされ、その中身を詳しく見ることを怠りがちだったことに気づかされました。改めて、目的を無視した代表値の活用が良い分析結果につながらないと感じました。平均値にも加重平均や幾何平均など様々な種類があり、それらの算出方法を学べたのはとても良かったです。 代表値への新たな挑戦 現在、自分が理解したつもりでいる部分が多いと考えています。今後は、他の練習問題にも挑戦し、世の中に溢れている代表値がどのように算出されているのかを更に考えられるように努めたいです。 分析結果をどう伝えるか? データを分析し加工することによって、相手に何を伝えたいのかを明確にし、グラフや代表値の算出を行いたいと思いました。また、公的データでも分かりやすい平均値だけを提示して受け取り手の印象に強く残す手法がありますが、代表値の裏側にあるデータの分布を調査した上で、そのデータから何が言えるのかをしっかり考えたいと思います。 データ加工で心掛けること 以下の点を心がけます: - 加工データの裏側を考える癖をつける - 自分でデータを加工し、伝えたいことが伝わるようにする - データ加工の前に必ず要件定義を行う - 様々な平均値の算出方法について、仕組みや成り立ちを理解する

クリティカルシンキング入門

忘れがちなイシュー、一貫して押さえるコツ

イシューを忘れないためには? 「イシューを一貫して押さえ続ける」という言葉が特に印象に残りました。実務においても、ディスカッションの中でイシューを忘れてしまいがちで、howの話が中心になってしまうことがよくあります。今後は、常にイシューを意識しながらディスカッションを進めるよう心がけたいと思います。そのために、アジェンダには必ずイシューを書き込み、ディスカッション中にそれを見ながら進行し、途中でずれがないかを定期的に振り返るようにします。 どのように課題を捉えるか? 今週の学習を通じて、ディスカッション中にイシューを押さえ続けることが非常に重要だと感じました。実務において、従業員サーベイの数多くの設問の中から課題を見つけ出す際には、総合演習で学んだ問いを立てる順序(一つの軸を決めて分解し、「今ここで出すべき問い」を出す)を参考に課題を捉えるようにしたいと思います。 実務での具体的な取り組みは? 以下の点に留意して、イシューを特定していきたいと考えています。 - 問いの形にする - 具体的に考える - イシューを押さえ続ける 毎日の実務では、各種ミーティングの事前準備からミーティング、振り返りまでこれらを意識して取り組みたいです。特に「イシューを押さえ続ける」ことは忘れずに実践していきたいと思います。

アカウンティング入門

数字から学ぶ!会社全体の魅力探求

収益仕組みをどう捉える? P/LやB/Sには、企業がどのように収益を上げる仕組みになっているのか、またターゲットと提供しているサービスのコアバリューが反映されていることがよく現れていると感じました。業界ごとに特徴が異なるのはもちろん、同じ業界内でも各社の核となる価値観が異なる点が印象的でした。 業務視点をどう広げる? また、自分の業務を単なる小さなかたまりと捉えるのではなく、会社全体や事業全体の観点からアカウンティングに結びつけて理解していくことの重要性を実感しました。事業部単独だけでなく、他部署の数字やコアバリュー、今後の方向性をアカウンティングを通して捉えられるようになりたいと思います。 B/S項目をどう見る? さらに、自社のB/Sの各項目については、社内で積極的に質問し確認していきたいと考えています。会社全体や各事業部のセグメント利益は決算資料から把握できますが、事業部ごとのP/Lも存在を確認し、しっかりと目を通すことが大切だと感じました。 他社比較はどう進む? また、100本ノックの資料を読み、同業他社と自社のP/LやB/Sを比較することで、現状の理解を深めたいと考えています。そして、これらの数値やコアバリューを改善するための観点から、新規事業の検討にも積極的に取り組んでいきたいと思います。

デザイン思考入門

人間味あふれる学びの現場

さまざまな受講生の特徴は? 多様な職業や経歴を持つ受講生が集まっている点が、まず印象に残っています。講座で学ぶデザイン思考は、システマチックかつ洗練されたアプローチに見えながらも、その実践過程は人間中心であり、実際の現場で必要な泥臭い努力が感じられるのが魅力的です。今後6週間のカリキュラムを通じて、社会問題への取り組みなど様々な課題意識を持った方々との交流や議論から、新たな視点と学びを得ることを楽しみにしています。 デジタル活用の進め方は? 自身の業務では、最新のデジタルやAI技術関連の施策を実際の業務に落とし込む際に、デザイン思考のアプローチを活用していこうと考えています。技術の利用自体が目的とならないよう注意しつつ、各社員の業務の生産性や効率性向上を主眼に、利用者である社員を中心に据えたプロセス作りができると期待しています。 現場との連携はどう? また、単にデジタルやAI関連施策を実装するのではなく、実際に業務を担当する社員と積極的にコミュニケーションをとりながら進めることが重要だと考えます。現状の業務プロセスについての課題インタビューや一緒に業務を進める取り組みを通じて、業務理解と担当社員の課題意識をより深く共有することで、施策の価値や利益を関係者に適切に伝えられるようになると確信しています。

データ・アナリティクス入門

実践で切り拓く学びの扉

A/Bテストは何が見える? A/Bテストは、2つの施策を比較し、どちらがより適しているのかを実際のユーザー行動に基づいて判断する有効な手法です。アメリカ大統領選などの大規模な事例でも用いられている点が印象的で、仮説だけでなく実績に裏打ちされた評価がとても参考になりました。 演習で何を実感した? また、演習を通じて、問題の各要素をステップごとに分解することで、どのデータを抽出すればよいかが具体的に見えてきます。こうしたプロセスは、原因の特定を容易にし、問題解決に向けた新たな視点を提供してくれました。 業務再構築はどう進める? 社内業務の再構築にあたっては、まず課題を洗い出し分類した上で、それぞれの課題のどこに原因があるのかを要素ごとに分解して検証する方法が効果的だと感じました。Howに飛びつく前に、What、Where、Whyの各段階を踏むことで、より論理的に解決策を見いだすことができると思います。 原因探しで見つけたヒントは? さらに、課題に対する取り組みでは、要素を段階ごとに書き出す過程が、問題自体の理解を深め、原因の特定に大いに役立ちました。その後、適切なフレームワークを用いて目的に沿った仮説を立て、多角的な視点から検討することで、より実践的な解析が可能になると実感しました。

データ・アナリティクス入門

仮説で突き抜ける分析の世界

分析の基本を確認? この講座では、分析とは単にデータをそのまま受け入れるのではなく、要素を分類し比較する作業であることを学びました。現状を鵜呑みにするのではなく、多角的に考え、目的や仮説を明確に持って取り組む重要性が印象に残りました。 分類と比較の仕方は? 具体的には、まず分析の基本として、データを分類することが必要だと再認識しました。そして、その分類された情報を比較することで、より深い理解が得られると感じました。さらに、明確な目的や仮説を持つことで、分析の取り組み方が一層意識的になり、有益な示唆が得られる可能性が高まると実感しました。 実務での分析戦略は? また、現職の業務においては、クライアント向けのマーケティング戦略を立案する際、膨大なデータの中から適切な視点を見出し、効果的な分析を行うことが求められます。目的や仮説を明確に持ちながら、意識的な比較検証を進めていくことで、売上に貢献できるような分析手法を確立していきたいと考えています。 着眼点を模索中? さらに、与えられたデータのどの部分に着目すべきか、どの分析手法を適用すべきかについては、まだ模索している部分もあります。今後は、理論を学びながら実務に直結する知識やスキルを身につけ、より具体的な分析ができるよう努力していきたいと思います。

データ・アナリティクス入門

具体例で感じる数値分析の魅力

精緻な数値はなぜ? データの数値が精緻であることの重要性について、具体例を通じてしっかりと学ぶことができました。ただ単に平均値を算出するのではなく、その数値が持つ意味や背景を理解することが、正確な分析と意思決定に直結する点が印象的でした。 目的分解は本当に必要? また、目的を明確にした上でデータを要素に分解し、具体的な項目ごとに比較することが不可欠であると実感しました。単一の指標だけでは十分な判断材料とはならず、複数の視点からデータを総合的に見直すことで、初めて意味ある洞察が得られると理解しました。 比較手法には何が効く? さらに、PC購入の事例などから、データの比較が意思決定において大きな役割を果たすという点が強調されました。これを踏まえ、自身の業務に直結する営業データの分析―受注数、流入経路、企業特性、自社取引実績、月ごとのニーズや競合の状況など―を、目的に沿ってExcelで整理しながら分析する手法が非常に有用だと感じました。 多角的意見交換はどう? グループワークでは、異なる業界や職種の仲間と意見交換を行うことで、多くの刺激を受けることができました。多様な視点に触れることで、自分の分析方法や業務運営に対する考え方に新たな気づきを得ることができ、非常に有意義な学びの場となりました。

データ・アナリティクス入門

データで紡ぐ成長の物語

データ整理は安心? データの切り出し方について、以前は数字が欲しいならこれといった感覚で扱っていたため、具体的に整理する作業が非常に有意義でした。成長率の求め方についても久しぶりに見直し、これまで間違った計算方法を用いていたことに気づけたのは大きな収穫です。 分布分析の効果は? 定量分析の手法として、代表値と分布に注目し、データをビジュアル化してより理解しやすくする方法を学びました。平均値が外れ値の影響を受けやすいという点に加え、単純平均、加重平均、幾何平均、中央値といった代表値や、標準偏差を用いた散らばりの把握、さらにはヒストグラムでばらつきを表現するテクニックが印象に残りました。 データ活用の秘訣は? また、ECにおける購入者分析や売上、アクセス解析にこの知識を活かせると感じました。特に、複数の商材を取り扱う場合のデータ集計処理について、最終的に求める数値や、それをどのようにビジュアル化すれば良いのかを意識したデータ分析ができるようになりました。 感覚から論拠に? これまで感覚的に行っていたデータ処理について、なぜその手法を用いるのかを説明できるようになり、自信がつきました。今後は月次のアクセス状況の説明にも、より論拠をもって提案し、販売方針や経営判断に結びつけていければと考えています。

マーケティング入門

感動体験が未来を拓く

感情と体験のつながりは? 「経験が感情に紐づき、その人にとって唯一無二になる」という考えが最も印象的でした。単に商品を販売するのではなく、顧客との長期的な関係を築くことでライフタイムバリューに結びつけるというアプローチは、体験の変化や社会の課題解決といった視点が、長期的な顧客関係形成において重要であることを教えてくれました。 なぜ起業の知見が必要? この学びは、新規業務の提案に活かすとともに、将来的な起業にも役立てたいと考えています。特にスタートアップでは、短期的な成果と長期的な仕組み作りの両面が求められるため、大手企業の事例だけでなく、中小企業の成功と失敗の両パターンから経験を積む必要があると実感しました。そのため、書籍や動画サービスを利用し、情報を常に収集する習慣を大切にしています。 どうやって学びを深める? 具体的には、書籍と動画の二つの媒体から継続的に情報を得る計画です。購入した本は全て読み通すのではなく、目次やダイジェストを参考にし、読むべき内容かを判断してから深く読み込むようにしています。また、今後は学習時間に余裕ができると考え、その時間を有効活用して継続的な学びを心がけるつもりです。さらに、部署内でアウトプットの機会を設け、知識を伝えることでさらに習熟を目指していきたいと考えています。

データ・アナリティクス入門

ゼロから始める客観分析術

どの分析方法が有効? 問題を特定する際のアプローチについて、分類や分解の手法、考え方の基本を身につけることで、さまざまな課題に対してゼロから悩むことなく、正しい分析を進められると実感しました。学習の中ではプロセスの分解に重点を置いていましたが、他の方法についても幅広く覚えておきたいと考えています。 提案の見直しは必要? 実業務においては、顧客への提案で解決策ありきで進めてしまうケースがあり、都合の良い分析になってしまうことがあります。こうした提案は初めは良い印象を与えるかもしれませんが、本質的な課題解決にはつながらず、長期的には評価を下げるリスクがあるため、業務の進め方を見直す必要があると感じました。まずは、これまで学んだ分析のステップに基づき、客観的かつ正確な分析を実行した上で、最適な解決策を提案することが重要だと思います。 行動計画はどう決める? 具体的な行動としては、実業務で特定のサービスに依存せず、客観的で正確なデータ分析を徹底し、複数の選択肢を比較検討することが求められます。そして、適切な判断基準を設定して最適な解決策を提案することを意識します。加えて、提案後の振り返りを行い、実施した解決策の効果をデータで検証する仕組みを整えることで、継続的に提案の機会を創出できると考えています。

クリティカルシンキング入門

問いが紡ぐ学びの物語

問いをどう捉える? 私が今回実感したことは、まず「問い」を立てる重要性です。具体的には、問いを言語化することで自分の方向性が定まり、その後の検討に一貫性が持たせられる点が大きなポイントです。また、問いを記録することで、後になって論点がずれることを防ぎ、さらにそれを他者と共有することで、常に認識のすり合わせができる点も大切だと感じました。 イシュー設定は難しい? しかし、実際にはイシューを設定する作業が容易ではありません。なぜなら、問いを作るためには脳内のエネルギーを費やす必要があり、また他者との調整にも労力が必要となるため、ついその作業を回避してしまいがちです。それでも、実際に取り組んでみると、設定に対する投資よりも得られる効果が大きいと実感できるため、重要なテーマに対してはその投資を惜しまず行う価値があると考えています。 実践事例から何を学ぶ? さらに、実践演習のケーススタディにおいて、あるファストフードチェーンの事例が印象に残りました。具体的には、初めに「客離れ」の問題に取り組み、その後で「客単価」の向上に注力したという順序が採用されていた点に興味があります。もしこの順番が逆になっていた場合、どのような結果になっていたのかを考えると、問題解決のプロセスにもメリハリが必要であると再認識しました。

クリティカルシンキング入門

問いの力で広がる学びの未来

問いをどう理解する? 「問いを立てる」という言葉について、普段の言い回しとは異なり、初めはピンと来なかったものの、ライブ授業の具体例を通じて理解が深まりました。YESかNOで答えられる問いを設定することで、その答えに対する論拠や分析が求められ、論理的な説明が自然と身につくと実感しています。これまでの日々の業務にも通じる部分があり、改めてその意義を認識することができました。 フレームワークの再確認は? また、これまでシステム開発の現場で漠然と使っていた思考のフレームワークが、今回の学習を通じて再確認できた点も大きな収穫です。部署内で複数のシステム開発案件のレビューを行った際に、報告内容が論理的でない場面に直面することがあり、状況を整理するためにこのフレームワークを意識的に活用できそうだと感じました。さらに、事業計画の立案や部下のサポートにも、今までの経験にとらわれない新たな視点を加える上で大いに役立ちそうです。 イシューリストをどう見る? ライブ講義で紹介されたイシューリストの作成方法も非常に印象的でした。日常業務では緊急度の高いものが優先され、本来注目すべき課題が見落とされがちですが、イシューリストを作成し定期的に見直すことで、重要な問題点を把握し、対処策を検討する体制を整えられると感じました。
AIコーチング導線バナー

「印象」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right