クリティカルシンキング入門

効率的な課題特定で未来を創る

どう考えて選ぶ? 相手にメッセージを伝えるためには、何をどのようにすべきかを明確にすることが重要であると学びました。また、課題を的確に特定することが、すべての基本になると思います。今後は、明確に課題を特定し、自分が直面している問題をしっかり考える習慣をつけたいと思います。 なぜすり合わせる? 毎日多くの業務をこなす中で、深く考える時間が取れていないのが現状です。このままでは、さらに仕事が増えてしまうと感じています。そこで、ミーティングでは課題解決や共有すべき内容をしっかりすり合わせたいと思います。 どの議題を用意? 毎週行われるミーティングでは、事前にどのようにディスカッションを進めるか、何を課題として捉えるかを準備しておこうと考えています。適切な議題設定とその活用を通じて、実践していきたいと思います。

マーケティング入門

信頼が導く本音の宝探し

本当のニーズとは? 顧客ニーズは必ずしも一つに絞られるわけではなく、本人すら認識していない複雑な側面が存在します。真のニーズを把握するためには、調査を通じてフィードバックを得ることが有効ですが、日本人の特性や報酬型の場合、遠慮して本音が聞きにくいケースもあるため、まずは信頼関係を築いてから本題に入ることが大切です。 潜在ニーズは何? また、真のニーズをさらに深く探ることで、新たな発見につながる可能性があります。自社の製品領域にとらわれず、顧客が直面している状況や立場を広い視野で捉え、他の潜在的なニーズについても丁寧に掘り下げる姿勢が求められます。 信頼はどう築く? 今後は、各種キャンペーンのアンケートや顧客との打ち合わせの機会を積極的に活用し、信頼関係の構築を意識しながら取り組んでいきたいと思います。

データ・アナリティクス入門

仮説×データで未来が変わる

仮説とフレームワークは? 本講座では、問題解決のプロセスにおいて、スピードと精度を向上させるために、仮説を立てながら分析を試みる重要性を学びました。また、3Cや4Pといったフレームワークを効果的に活用する方法も理解できました。 必要データはどうする? 仮説に基づいて必要なデータを抽出し、場合によっては新たにデータを取得する必要があることも実感しました。既存のデータ分析にとどまらず、サーベイの実施などによって分析に不可欠な情報収集にも役立てることができると感じました。 多角的観点は何故? さらに、分析の視点は単に数値やデータを検討するだけでなく、データ整備や企画立案の段階でも重要であるという気づきを得ました。今後、業務のあらゆる場面でこれらの視点を取り入れながら取り組んでいきたいと思います。

クリティカルシンキング入門

会話で広がる客観視点の世界

なぜ客観視が必要? 客観的に物事を捉えるためには、訓練が必要だと学びました。自分の思考のクセを理解するだけでなく、他者と恐れずディスカッションを行うことが、より客観的な視点を養う一助となるという新たな視点を得ることができました。一人で考える場合と比べ、会話を通じて自分の話し方や考え方の癖が見えてくるため、こうした対話の重要性を実感しました。 本当に今の方法? また、クリシンを確実に身につけるためには、まずは徹底して考え抜く習慣をつける必要があると感じました。仕事においては、直前の「やらなければならないこと」があると、つい過去の方法に頼ってしまいがちです。しかし、かつてと現状では状況が大きく異なることも多いため、本当にその方法で十分なのか、他に有効な解決策はないかと自問し続けることが大切だと考えています。

データ・アナリティクス入門

データ分析で仮説と検証を学ぶ

仮説の立て方を見直すには? 今まで、データ分析において仮説から検証のプロセスをなんとなくで行っていたが、複数の仮説を立てることや、網羅性を持たせることはあまり意識していなかった。また、立てた仮説の検証だけでなく、反対の事象を裏付けるデータも収集することで、より説得力のある仮説検証ができる点も意識すべきだと感じた。 データ分析を業務にどう活かす? 今後、業務でデータ分析を行う際には、仮説立てから検証までのプロセスを意識的に組み込むようにしたい。現在取り組んでいる運転資本の改善についても、問題がどこにあるのか(Where)を仮説立てし、既存のデータから分析を行うようにする。そして、Whereが特定できた後には、なぜその問題が生じたのか(Why)の仮説を立て、その仮説を立証するための分析方法を検討するつもりだ。

クリティカルシンキング入門

学びが心を動かす瞬間

イシューの本質は? まず、イシューとは、今ここで考えるべき問題を意味します。扱うべき事柄を問いの形で設定し、何に着目するのかを明確にすることが大切です。そのため、常にイシューから逸脱しないよう意識しながら議論を進めます。 切り口の選び方は? 次に、イシューを分かりやすくするため、複数の切り口で要素に分解します。数字については、一手間加えて分析することで、より具体的な視点を持つように努めます。 議論はどう進む? また、問題に取り組む際は、いきなり考え始めるのではなく、まずイシューを明確に特定し、その構成要素に分解してから本格的に検討するようにします。複数のメンバーで取り組む場合は、各自がイシューや要素を共通認識として把握できるよう、ホワイトボードなどに記録しながら議論を開始することが求められます。

データ・アナリティクス入門

仮説実践!即断で未来を掴む

効果測定は本当に? A/Bテストの実施により、短期間で効果測定が可能であることを実感しました。一方、単にデータ収集に時間をかけるだけでは、必ずしも問題解決には結びつかないということが分かりました。 分析時間は適切? 業務を進める際、初めはデータ分析から始めることが多い中、分析に時間をかけすぎる傾向があると感じています。一定量のデータが得られた段階で、迅速に仮説を設定し、追加の分析が必要かどうかを判断するか、実行フェーズに移行するかを見極めることが重要だと学びました。 行動開始のタイミングは? このコースを通じて、仮説に基づき行動に移すタイミングの大切さを再認識しました。今後は、データ分析に没頭しすぎず、適宜ストップしながら、仮説思考を軸にした実践的なアプローチを心がけたいと思います。

戦略思考入門

数字で紐解く組織改善のヒント

基本原則はどう理解? 演習を通じて、規模の経済や規模の不経済といった製造業の基本原則を改めて認識する良い機会となりました。非製造業であっても、固定費と変動費の区分を用いた損益分岐点の考え方を、組織全体にフィードバックすることが重要だと感じました。 コスト計測は正確? また、組織内の複数のビジネスにおける生産性や効率性を分析する際には、できるだけ現実的なコスト計測(固定費、変動費)を行い、経常利益段階での損益積算分析を実施する必要性を痛感しました。 改善活動に期待は? こうした分析結果を基に、組織メンバーが納得しやすく、課題を具体的に把握できる環境を整えることが理想です。その上で、改善活動を組織目標として共有するため、モチベーション向上策と連動した取り組みを進める必要があると考えています。

クリティカルシンキング入門

グラフで魅せる伝え方の秘訣

グラフ選びは何が肝心? キーメッセージに合ったグラフ選びが大切です。まず、読んでもらうために、キーメッセージの工夫を重ねる必要があります。抽象的な内容ではなく、具体的なメッセージを用いて、上司や顧客に何を伝えたいかを明確にすることが求められます。 スライドの心得は? また、何のためのメッセージなのか、細部まで考えたうえで資料を作成することが重要です。作成する際には、本当にこのスライドで良いのか、読み手に分かりやすい文章になっているかを意識し、今後のアクションや示唆も資料に落とし込むように努めます。 日々の見直しはどう? 日々の業務においても、必ずキーメッセージを念頭に置いて文章や資料の作成を行います。どのスライドも、この内容で問題がないか、無駄な部分がないかを常に検討することを心がけています。

データ・アナリティクス入門

比較で見える回収改善のカラクリ

分析の基本は? 債権回収の分析にあたっては、「分析は比較である」「apple to apple」「生存者バイアスに気をつける」の三つのキーワードを常に意識しています。まずは、分析の目的を明確にし、全体像をビッグデータで可視化するところから始めます。 現状評価はどう? 具体的には、保有している債権全体と請求可能債権の集計を行い、過去からの変遷を比較することで現状の回収状態を評価します。その上で、改善が求められる債権セグメントを明らかにしていく方針です。 集計イメージは? まずは集計のイメージを作成します。保有債権を請求可能なものとそうでないものに分類し、細分化した内容を表にまとめます。イメージが固まったらビッグデータを活用して集計を実施し、過去からの遷移表を作成して比較しやすい状態に整えます。

データ・アナリティクス入門

実務に効くプロセス分解の秘訣

どこで分割すべき? 今週はプロセスに分けて分析する方法を学びました。Web解析の基本知識があるため、内容は理解しやすかったです。特に、Web以外の分野でプロセスに分解して分析する場合、どの段階で分割するかが非常に重要だと感じました。効果的でないプロセス分割をしてしまうと、いかに情報を分析しても課題解決に結びつく情報提供ができなくなるため、プロセスの分離設計が不可欠だと実感しました。 A/Bテストはどう? また、A/Bテストについては実施が必要だとは思いつつも、実務ではリソース不足などの理由で2パターンの検証が難しいケースが多いと感じています。そのため、実務ベースでは別の手法を模索する必要があると考えます。勉強のために、実際に行われたA/Bテストの具体的な事例があれば、ぜひ共有いただきたいです。

クリティカルシンキング入門

振り返りから見える成長の瞬間

自分で手を動かす意義は? 与えられたデータをただ眺めるだけでなく、必ず自分自身で手を動かし、さまざまな観点から検討することが大切です。一つの切り口だけでは見落としがあったり誤った結論に至る可能性があるため、複数の視点をもって仮説を立て、検証する必要があります。まずは、全体をどのように定義するかを明確にしてから、データの分け方を考えてみてください。そして、その考え方が本当に正しいのか疑う姿勢も忘れずに持つようにしましょう。 データが提案の鍵か? 通常の業務でデータを扱う機会があまりない場合には、まずクライアントとの会話の中で参照できるデータについて触れてみると良いでしょう。提案の際、市場や現状の理解を示すためにも、データを活用しながら仮説をもとにさまざまな切り口で検証していくことが求められます。

「本」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right