データ・アナリティクス入門

仮説思考が拓く学びの扉

仮説思考は何のため? 仮説思考は、効率的な分析を行うために欠かせない手法です。基本的なステップは、目的(問い)の把握、問いに対する仮説の設定、データの収集、そしてそのデータをもとに仮説を検証する、という四段階で構成されます。 どのデータを集める? データ収集の方法は大きく二つに分かれます。まず、既存のデータを集める方法として、検索エンジンや各種リサーチサイトを活用します。次に、まだ存在していないデータについては、実際に観察したり、有識者へのヒアリングやアンケートといった方法で収集を行います。 五視点はどう活かす? また、仮説思考を実施する際には、以下の五つの視点が重要です。インパクトではその影響力の大きさを、ギャップでは何がどのように異なるのかを捉えます。トレンドでは時間的な変化や変曲点、外れ値に注目し、ばらつきではデータの分布が偏っていないかを確認します。最後に、パターンの視点からは、法則性があるかどうかを見極めます。 グラフ化の手順は? グラフ化を行う場合には、次の三つのステップが有効です。まず、仮説や伝えたいメッセージを明確にし、次に比較対象を設定、そして適切なグラフを選んで情報を整理します。 経験が必要な理由は? 仮説思考については、これまでチームでの実践経験がないため、上司に相談しながら取り組むことが望まれます。一方、データ収集に関しては、企業独自の情報をうまく活用することで、新商品の開発に役立つ可能性があります。また、来月更新される免税施策に関しても、その対応方法を検討していく必要があります。 新規取り組みの課題は? 組織の一員として新たな取り組みを始めるのは容易ではありませんし、チーム全体が仮説思考の本質を正しく理解しているかどうかも不透明です。来週から開始されるデジタルのショッピングクーポンの運用にあたっては、まずデータ収集を行い、半年先や来年度の数字を分析する可能性を模索するものの、まずはデータ収集自体に時間を要する点が懸念されます。

データ・アナリティクス入門

プロセスで発見!学びの秘密

原因はどこにある? 問題の原因を探るためには、まずプロセスを細かく分解し、各段階でどこに問題が潜んでいるかを仮説検証する手法が重要です。複数の選択肢を洗い出し、根拠に基づいて適切な判断を下す点にも着目しています。また、A/Bテストを実施する際は、できるだけ条件を整えた上で比較することが求められます。 効果的な分析法は? 具体的なデータ分析の方法としては、まずステップを踏みながら問題の精度を高めるアプローチと、仮説をもとにデータを収集し、より良い解決策に結び付ける手法が組み合わされています。これにより、最適な解決策の検出が可能となります。 分解とテストの極意は? プロセスを分解する方法とA/Bテストのポイントを組み合わせることで、より高度なデータ分析が実現されます。仮説検証と条件を揃えた比較の両面からアプローチすることで、実際の検証結果に基づいた改善が期待されます。 実例から学ぶには? 実際の事例としては、ポイント会員向け利用促進キャンペーンにおいて、若年層の反応を探るために、若者が関心を持つジャンルの店舗を複数選定し、クリエイティブのA/Bテストを実施する計画が挙げられています。過去のキャンペーンデータを活用し、ポイント付与がどの層の購買に影響しているかを機械学習を用いてアプローチする手法も取り入れられています。 次回でどう活かす? 次回のキャンペーンでは、会員データからターゲットとなる層の購買パターンを複数洗い出し、ロイヤルカスタマー化につながる経路を明らかにすることが目標です。洗い出されたカスタマージャーニーに基づき見込み客にアプローチし、その反応をPDCAサイクルで検証・改善していく計画です。 全体をどう見る? 全体として、プロセスの分解とA/Bテストの方法を的確に押さえたアプローチが示されており、仮説検証を実際のデータに基づいて試すことで理解が一層深まる内容になっています。今回学んだ内容を次のプロジェクトでどのように活かせるか、引き続き考えていきましょう。

クリティカルシンキング入門

もう一人の自分を育てる学びの旅

学びはどんな内容? WEEK1の学びを整理してみて、以下のような重要なポイントに気づきました。 批判的思考って何? まず、「もう1人の自分を持つ批判的思考」が重要です。思考には偏りがあり、ついつい自分が考えやすい方に流されがちです。しかし、みんなが同じように考えているとは限らないことを意識すべきです。そのため、主観的ではなく、客観的に考える姿勢が必要です。思いつきで判断するのではなく、説明責任を果たすために3つの「視」(視点、視座、視野)を使って視野を広げることが求められます。 現状分析はどう? ケースワークを通じて学んだこととして、現状を細かく分析し、理想的な姿をしっかりと見据えることが大切だと感じました。「問い」を意識し、今何を課題にするべきかを見極めることを忘れてはいけません。フレームワークを活用することはもちろん重要ですが、それに固執しすぎない柔軟な姿勢も必要です。 他者の意見はどう? グループワークを通じては、客観的に物事を考えるために他者の意見を聞くことが近道であると感じました。相手がその考えに至った理由を聞くことで、今後自分が客観的に考えるためのヒントになります。 営業会議はどう進む? 営業会議においては、数値目標達成に向けて行動を決める際、過去の経験に頼りすぎると、やるべきことが毎回同じになってしまう傾向があると気づきました。このため、課題を特定する際には、まず要因分析を丁寧に行い、1枚の紙に簡潔にまとめて、伝えるべきことを結論から述べ、その後に根拠を伝える姿勢が効果的です。 書類作成ってどう? 提案書や報告書においては、短くまとめることが重要です。提案書はワンペーパーにまとめ、視覚的に認識しやすいよう工夫します。報告書も同様に、ワンペーパーで読み手の立場に立って、文章やグラフを工夫することが望ましいです。 メールは要点ある? 最後に、メール発信時は、指示が長くなりがちなので、簡潔に結論を先に述べ、理由は3点以内にまとめることを心掛けます。

データ・アナリティクス入門

目的と仮説で切り拓く分析の道

目的と仮説の意義は? 分析のプロセスを学ぶ上で大切だと感じたのは、まず目的と仮説の設定の重要性です。初めにしっかりと目的や仮説を設定しておくことで、分析中に迷ったときもその軸に立ち返り、方向性を調整することができます。一方、分析を進める中で既に立てた目的や仮説が現状に合わないことが分かれば、柔軟に振り返って調整・修正することも必要だと実感しました。 伝え方の極意は? また、分析結果を伝える相手を具体的に想定することが重要であると学びました。相手の立場や背景を考えずに分析を行うと、数字の羅列に終始してしまい、メッセージ性が希薄になる恐れがあります。目的設定と結論を伝える相手の明確化が、データ収集や加工、発見のプロセス全体を論理的に整理する鍵となると理解しました。 予想外の結論は? 一方で、講義の中でビッグデータの扱いに際し、予想外の結論が導かれる場合があるという点に、不安も感じました。どのような分析でも、蓋然性の高い結果かどうかの検証や、批判的に結果を捉える視点は欠かせません。こうしたリスクを回避するためにも、分析は一人で完結させるのではなく、周囲とのコミュニケーションを大切にしていきたいと考えています。 依頼背景を考える? 私の業務は予算管理で、主に予実比較を担当しています。これまでは、他部署からの漠然とした依頼(例えば「売上の減少」や「費用の増加」)に対し、データが示す傾向をもとにすぐに分析を行うことが多かったのですが、今回学んだ目的と仮説の設定の重要性を踏まえ、依頼の背景をしっかりと把握する必要性を感じました。 積極分析の進め方は? 今後は、例えば売上減少の原因調査において、単に結果だけを追うのではなく、依頼の背景や意図を明確にし、適切な仮説を検証するプロセスを重視していきます。また、一般的な依頼に対しては、既に認識されている問題に取り組むのではなく、未発見の課題や潜在的な問題を先に見つけ出すような、より積極的な分析を目指していきたいと思います。

マーケティング入門

戦略の切り分けが未来を拓く

セグ分けの理由は? セグメンテーションでは、自社に合った切り分け方を考えることの重要性を再認識しました。法人向け商品の場合、規模や外資・日系の違いなどで分けるといった視点は、非常に実践的だと感じます。また、顧客企業の規模、製品の市場、製品サイズ、生産ロットの違いなど、具体的な分類軸が挙げられており、これらを基に自社の戦略を練り上げることが大切だと思いました。 ターゲットはどう見る? ターゲティングに関しては、6R(市場規模、成長性、競合状況、優先順位、到達可能性、反応の測定可能性)という評価基準のうち、特に市場規模、成長性、競合状況の3点が鍵になるとの考えに納得しました。これにより、市場の魅力と自社が勝ち残る可能性とのバランスを適切に判断して、新たなターゲット層を掴む戦略の重要性を学びました。 強みはどう伝わる? ポジショニングの部分では、2つの要素を縦軸横軸に配置したポジショニングマップを用いる手法が印象的でした。単一の価値だけでは競合との差別化が難しい場合も、複数の価値を組み合わせることで独自の魅力を生み出せるという点が参考になりました。顧客の視点から自社の強みが明確に伝わるよう工夫する必要があると感じています。 事例から何を見る? さらに、航空機業界向けとして開発された機械が実は他の業界からの引き合いが多かった事例は、各ターゲットの市場規模、成長性、競合の状況、そして開発品のメリットを具体的に把握することの重要性を改めて認識させてくれました。今後はリサーチ部門との連携を深め、より精度の高いターゲット選定を実現していきたいと考えています。 有効な策は何か? 特にBtoBのマーケティングにおいて、どのようなセグメンテーションが有効なのか、他社の事例や先輩方の経験を伺いながら、自社の戦略に反映させていくことが今後の課題だと感じました。全体として、戦略的な市場分析の基本的な考え方と具体的な手法について、非常に実践的な学びを得ることができたと思います。

データ・アナリティクス入門

生徒集客の裏側を数字で解明!

問題の背景は何? ミュージックスタジオの課題では、3W1Hのプロセスを通じて、何が足枷になっているのか、またどのような取り組みが利益に結びつくのかを多角的に分析することができました。さまざまな背景を考慮する中で、問題点が浮かび上がり、どの対策を最優先すべきかを判断する難しさを実感しました。 生徒数増加の課題は? 「生徒数を増やすこと」が売上向上に寄与すると漠然と感じていたものの、原因や具体的な問題点を掘り下げると、考慮すべき要因が多岐にわたることが明らかになりました。一人でその優先度や重要性を選別するのは、非常にハードルが高い作業だと感じました。 対応策は有効か? また、抽出した問題・課題に対する対応策を考える際、今回のイベント開催のように、必ずしも提案が有効に働くとは限らないことを体感しました。そのため、背景にある数値データの分析も併せて検討する必要性を改めて意識するに至りました。 MECEはどう活かす? 「もれなく・ダブりなく」という言葉は以前から耳にしていましたが、今回初めてMECEという考え方に触れました。データクレンジングの際にも一定の意識はあったものの、「もれなくダブりなくもほどほどに感度のよい切り口をたくさん持っておく」という点に大きな感銘を受けました。 現状と理想のギャップは? 取り組むべき問題に対して、「あるべき姿」と現状とのギャップを埋める方法には、正しい状態に戻す対応と、ありたい姿に到達するための対応の2パターンがあることにも気づきました。業務改善の提案にあたっては、現状が悪いという視点だけでなく、現状の良い部分をさらに伸ばしていく視点も取り入れていきたいと感じました。 集客対策はどう検証? 最後に、ミュージックスタジオの事例では、計画通りに生徒を集めることができなかったことが利益に結びつかなかった要因として挙げられていました。これからは、具体的にどのような対策を講じることで生徒を集められるのか、さらに深掘りして考えていきたいと思います。

データ・アナリティクス入門

データ分析で見抜く!成功の秘訣とは?

代表値や散らばりは? 今回の学びでは、データ分析における重要なポイントを整理しました。まず、定量分析を行う際には、「代表値」と「ちらばり」の両方を把握することが重要です。代表値には、単純平均や加重平均、幾何平均、中央値があり、それぞれの特徴を理解することでデータの中心を捉える手助けになります。また、平均値を算出する際には、外れ値の確認が不可欠です。ちらばりには、標準偏差や正規分布があり、それらを活用してデータの散らばり具合を把握します。さらに、データをビジュアル化することで、特徴的な傾向が捉えやすくなりますが、その際には正しいグラフを選択することが求められます。 相関か因果か? 次に、相関関係と因果関係の分析についてです。相関とは二つの要素がどのように関連しているかを示すものであり、因果関係とは原因と結果の関係です。これらをセットで分析し、次の打ち手を考察することが重要です。しかし、因果関係は誤認しがちであるため、自分の都合の良い分析結果に偏らないよう、常に意識して考えることが必要です。 分析は比較ですか? 今回の復習では、分析とは比較であることを再確認しました。問から仮説を立て、データ収集を経て、それを検証するというプロセスを繰り返すことが基本です。インパクトやギャップ、トレンドなど様々な視点からデータを分析し、グラフや数値、数式を使うことが有効です。 ツール選択はどう? 現状では、時系列分析を多用しており、分析ツールとしてTableauやSPSSを利用しています。これにより、顧客データや売上データ、プロモーション費用などを扱っています。具体的な分析例として、まず相関関係の分析においては、売上とプロモーション費用との関連を見て、どのプロモーションが効果的であるかを判断することを目的としています。また、パレート分析では、顧客をグルーピングし、どの顧客が優良であるかを可視化しています。これにより、優良顧客の特徴を把握し、効果的な販促やプロモーション計画の立案に活かしていきます。

リーダーシップ・キャリアビジョン入門

キャリアアンカーで未来を描くコツ

キャリアの意味は? キャリアとは単に仕事の経歴を指すだけでなく、仕事を通じて培われたキャリアアンカーのような価値観を内面から理解し、組織のニーズと自身のニーズを調和させながら生き抜いていくことを学びました。これにより、自分自身と周囲のメンバーと将来についてどのように取り組んでいくかを考えるきっかけとなりました。 リーダーはどう考える? リーダーが自分のキャリアに真剣に向き合うことで、リーダーシップがより発揮されやすくなります。リーダーが自身に向き合うことで、メンバーがより主体的に仕事に取り組む環境をサポートできるのです。キャリアを考える際には、個人と組織のニーズの調和が重要です。 アンカーの役割は? キャリアアンカーには、特定分野の専門性や管理能力、自律性、安定性、創造性、挑戦精神、社会貢献、生活様式など、8つの要素があります。これにより、現在の自分の状態と理想のキャリアに向けてどのように進むべきかイメージできます。ただし、キャリアアンカーは万能ではなく、その要素自体に良し悪しはないため、慎重に考慮する必要があります。 生存戦略はどう? キャリアサバイバルは、変化の激しい環境や複雑な人間関係の中で、個人に求められる役割をどのように見通すかを分析する手法です。目標に向かって必死に進みながらも自分の存在価値を確立するという意味合いがあります。仕事の棚卸や環境変化の認識、仕事の見直しを段階的に行い、これに伴ってキャリアアンカーを再確認し、周囲と話し合って理想のキャリア管理を行います。 自己開示は大切? まず、自分のキャリアに向き合い、メンバーに対しても自身のキャリアを開示することで、メンバーが自己開示し、仕事に主体的に取り組める環境作りをすすめます。そして、メンバーとのやり取りの中でキャリアアンカーの考え方を応用し、リーダーシップのスタイルを模索することが重要です。さらに、キャリアアンカーの考え方は、やる気の理論や衛生理論との関連性を理解するためにも役立ちます。

戦略思考入門

視点を広げ、競争を勝ち抜く差別化戦略

差別化の意味は? 差別化の目的は「顧客に選ばれること」であり、競合他社との違いを強調することは単なる手段に過ぎないと理解しました。このため、同業界のみならず他の業界からも幅広い視点で差別化を検討する必要があります。そして、考える施策が顧客にとって望ましいかどうかも重要であり、自社にとって効果的な差別化施策を見出すことの難しさを痛感しました。 顧客視点はどう? 今回の学習では、自社の製品やサービスの分析だけでなく、自分自身が顧客として製品・サービスを選ぶ際にも差別化を意識することが肝要であると感じました。 採用でどう差別化? 人事業務の中で特に差別化を考えやすいのは採用の場面です。例えば、給与を競合他社よりも高く設定するというコストリーダーシップ戦略には限界があるため、他社との差別化を図る必要があります。そこで、福利厚生や社風、働く環境といった金銭以外の要素を訴求し、応募者に自社の魅力を伝えることが有効です。そのため、まずは自社へ応募してくる人々がどのような企業と競争しているのかを調査し、企業選択における重要な要素を人材エージェントから収集・分析します。さらに、自社のSWOT分析と組み合わせて訴求ポイントを明確に整理します。 組織開発の秘訣は? 私の主な業務である組織・人材開発については、自社分析というよりも、世の中にある関連サービスの差別化ポイントを見極め、自社の強みを伸ばし弱みを克服するために最適なサービスを選ぶことが重要だと感じました。自社の課題を解決するために適したサービスを見極めるには、各会社が提供するサービスの訴求ポイント(低価格、独自機能、細やかな対応など)を徹底的に分析する必要があります。 施策選びはどう? 組織・人材開発の施策を企画する際には、まず自社のSWOT分析を行い、課題としてネックになっている要素(コスト、種類、使い勝手など)を抽出します。その後、各社のサービスがそれぞれの要素に対してどのような提供内容を持っているかを整理し、比較検討します。

データ・アナリティクス入門

標準偏差と仮説思考で業務改善を実感

標準偏差をどう使う? 分布やばらつきに気をつけることは、これまでの業務でも意識していましたが、標準偏差という形で数値化できる点は新しい発見でした。これまでグラフなどで傾向やトレンドを可視化する手法は行ってきましたが、標準偏差を用いて数値で比較することは新しい視点でした。これを身につけるために、現在の業務の実例に落とし込み、実践していきたいと考えています。 仮説思考をどう改善する? 仮説思考について、常に意識はしているものの、今週の学習を通じて、自分に仮説の引き出しが少ないことや、自分に都合の良い仮説を作りがちであることを実感しました。これらを改善する方法として、同じ事象を分析する際も常に2つ以上の仮説を立てることをマイルールとし、少なくとも当講座期間中は意識していきたいと考えています。 予測に役立つプロセスは? 四半期ごとの目標を追いかけている環境にあり、週次や月次での予約動向、今後の動向予測などに触れる中で、週次の動向分析時に数値が良い(または悪い)理由を考える際には、Week2で学んだWhat,Where,Why,Howのプロセスを踏んで複数の仮説を持つことを意識していきます。例えば、直近の予約動向が落ち込んだ場合には、「仮説1: 地震の影響」、「仮説2: 地震の影響ではないかも?」というように、あえて真逆の仮説も立ててみるなど、自分の経験や感覚に寄らない形での複数の仮説出しを行っていきたいです。 新しい視点をどう取り入れる? 以上の点を意識していく具体的な方法としては、以下の点があります。 - **複数の仮説出し**:同類の仮説のほか、あえて逆の仮説も立ててみる。 - **標準偏差の活用**:数値化の感覚がないため、これまでに利用してきた分布図などを用いて数値化するとどう見えるかを実践してみる。複数の事例で行い、数値の見え方を感覚的に掴み、実戦で利用できるようにする。 これらを日々の業務で実践し、新しい視点や考え方を自分のスキルとして取り入れていきたいと思います。

データ・アナリティクス入門

仮説で解く!未来への挑戦

仮説分類はどう理解? 仮説の分類について学んだことで、結論の仮説と問題解決の仮説という二つの考え方を理解することができました。結論の仮説は、ある論点に対して仮の答えを示すもので、たとえば、ある飲料メーカーがノンアルコール商品の健康面へのアピールを通じて客層を拡大した事例が印象的でした。一方、問題解決の仮説は、現状の現象から原因を究明し、対策や予防策を講じるための仮説であり、データの収集と分析能力の向上が不可欠であると感じました。 仮説で説得力は増す? また、仮説を立てることで検証マインドが育ち、他者に説明する際の説得力が増すことを実感しました。エビデンスに基づく行動が、具体的な改善策の実現を後押しすると考えています。 減少原因は何? 具体的な事例としては、まず勤務先の大学において、受験者数が過去4年間で大幅に減少している現状があります。この原因を解明し、定員確保につなげるためにも、仮説の活用が大変有効だと感じています。 精神問題はどう見る? さらに、偏差値の高低にかかわらず、精神的な問題を抱える学生が増加している点にも直面しています。ADHDやASD、ゲーム依存などの問題が見られ、これが原因で学生間や教職員とのトラブル、保護者からの苦情、さらには退学や留年の増加につながっていると考えています。これらの現象について、過去の研究や調査、実践活動報告を参考にしながら、本学での適切な対策を検討するために、問題解決の仮説を立てて取り組む必要があると思います。 対策の進め方はどう? 具体的には、まず学生相談室や担任、教職員へのアンケートを実施し、各部署からの情報を集約します。次に、問題とされる事案の件数や種類、これまでの対応内容とその結果を整理し、国のガイドラインやマニュアルと照らし合わせることが求められます。さらに、他大学で実施されている取り組み事例を調査し、本学で実施可能な対策案を策定します。その際、専門知識を持った人材や協力可能な関係機関との連携も視野に入れる方針です。

データ・アナリティクス入門

平均だけじゃわからない、データ物語

代表値の選定はどう? データ分析の学びで、まず印象に残ったのは代表値を考える際に、単純平均だけではなくデータのバラつきを十分に検討する必要がある点です。普段便利に使われる単純平均ですが、その値が適切な代表値になっているかは、データの分散や偏りを合わせて考えなければならないことに気づきました。具体的には、データの性質に応じた代表値として、加重平均や幾何平均、極端な値の影響を抑えた中央値など、さまざまな手法を学びました。 標準偏差はどう捉える? また、バラつきを評価するために、標準偏差(SD)や2SDの考え方を改めて認識することができました。統計的な手法を用いることで、人が感じがちな「恣意的な操作があるのでは」という疑念に対しても客観的な根拠を示すことができる点が非常に興味深く感じられました。2SDの範囲が極端な値を排除する役割を果たすという考え方には納得できるものでした。 評価の分散はどう見る? 業務では主に人事データや研修後のアンケート結果を扱う中で、10段階評価の平均値のみならず、標準偏差や中央値を併せて分析する重要性を再認識しました。例えば、講評の平均値がある数値であっても、評価が全体的に均一なのか、それとも高評価と低評価に二極化しているのかは、ばらつきの分析なしには判断できません。標準偏差が大きい場合は評価が分散し、逆に小さいと評価が平均近くに集中していることが明確になるため、データの分布や偏りを把握する上で非常に有用です。 集計手法はどう進める? この手法を実践するために、まずは研修のアンケート結果をExcelに集計し、標準偏差(STDEV.PまたはSTDEV.S)や中央値(MEDIAN関数)を計算します。次に、標準偏差が大きい場合にはヒストグラムを用いて評価の分布を視覚的に確認し、外れ値が全体に与える影響についても検討します。こうした分析を定期的に行うことで、研修の質や受講者の満足度について、従来の単なる平均値以上の具体的な洞察が得られると考えています。

「分析」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right