クリティカルシンキング入門

イシュー共有で広がる学びの輪

イシュー分析の意味は? Week 1の学びを振り返る中で、イシューの分析や分かりやすい説明の大切さを再確認することができました。議論を進める際にイシューの共有が重要であるという点を改めて認識でき、良い振り返りとなりました。 部下と意思決定の秘訣は? プロジェクトの進行において部下と共に意思決定を行う場面も多く、どこにイシューがあるのかを明確にし、必要な分析が実施されているかを意識することが相手の説明の正確さを判断する上で役立つと感じました。自分が説明を行う際も、相手の理解を促すためにどのような工夫ができるかを学ぶことができました。 改善へ向けた次の一歩は? 今後は、自分が実践した説明や分析について振り返り、Week 1で学んだ観点からうまくいかなかった点を整理して改善を図っていきたいと思います。また、一人だけの視点に偏らないよう、同じ講義を受講している仲間と定期的に意見交換を行い、より良い成果を目指していきます。

戦略思考入門

経済性の秘密を紐解くヒント

経済性って何だ? 今週は「経済性」について学び、規模の経済性、範囲の経済性、ネットワークの経済性の三つの観点から考察する機会を得ました。異なる業界や業種、商品・サービス間であっても、共通する法則やメカニズムが存在する点が興味深かったです。 リスクは何だろう? また、各経済性にはメリットがある一方で、不経済になるリスクも潜んでいるため、そのメカニズムを正しく理解しておくことの重要性を実感しました。自社がどの経済性を活かすべきか、また業界内ではどの経済性が働きやすいのかを探ることが今後の戦略形成において鍵になると考えています。 戦略の鍵はどこ? 例えば、単に顧客数を増やすことだけでなく、顧客が利用可能なサービスや商品の幅を広げる範囲の経済性に注目する手法が有効かもしれません。さらには、業界内で上位に位置する企業がどのようなメカニズムで成長を実現しているのか、そのプロセスを分析する視点も今後の参考になると感じました。

データ・アナリティクス入門

仮説思考が導く新たな気づき

仮説の多角的検討は? 仮説を立てる際には、まず複数の視点から仮説を検討することが大切です。初めから一つに固執せず、さまざまな切り口で網羅性を意識しながら検討することで、より広い視野を持って分析できます。また、手元にあるデータはそのまま利用するのではなく、仮説を証明するために適切に加工し、都合の良いデータだけでなく反対のデータとも比較することで、説得力のある検証結果が得られると感じました。仮説思考を理解し、活用することは、効果的なデータ分析にとって不可欠です。 売上属人化は懸念される? 一方、現在進めているあるプロジェクトの売上についてですが、担当者の力量によってうまくいっている状態が続いており、それが属人化しているのではないかという疑いがあります。この点については、従来の分析フレームワークである4Pや3C分析を用いて、しっかりと仮説を立てた上で、営業のアクション提案にまで具体的に落とし込んでいければと考えています。

クリティカルシンキング入門

アウトプットで開く成長の扉

問いの順序は何故? まず、どんな問いを立てるか、どのような切り口で分析するかを考える順序が非常に重要であるということを実感しました。その後、ただインプットするだけではなく、アウトプットを通じて実践することの大切さにも気づかされました。 意見交換の意味は? また、アウトプットの機会として他者とのディスカッションを取り入れることで、自分だけでは思いつかなかった考え方に触れ、フィードバックを得ながら自分の考えを見直すことができました。こうしたサイクルを継続することで、着実に力をつけていくのだと理解しました。 学びをどう活かす? これまで、自分の担当する業務に関連する資料を読んで理解を深めることに注力していましたが、アウトプットを意識していなかったことに気づかされました。今後は、知識を単に吸収するだけでなく、それが業務にどう活かされるのかを常に考え、疑問やアイディアをもとに周囲の人々と意見交換をしていきたいと思います。

データ・アナリティクス入門

仮説と比較で見える成長の軌跡

A/Bテストの見直しは? 業務において、あまり考えずにA/Bテストを実施していたことに気づきました。今後は、企画段階からバイアスを取り除く方法を模索し、比較のためのベースラインを整えることに留意したいと考えています。仮説に基づいてどのように探索を進めるかが鍵となり、改めて分析は「比較」が非常に重要であると実感しました。 フレームワーク活用法は? また、これまで学んだフレームワークや考え方(3C、4Pなど)を積極的に取り入れていきたいと思います。習得がすぐにはいかなくても、慣れるまで継続して実践し、しっかりと身に着けていく所存です。 データ分析はどう行う? さらに、A/Bテストを実施する際には、可能な限りランダマイズすることや、比較に必要なサンプル数や実施期間を十分に検討することが重要だと感じました。分析時にも、どのような背景や手法でデータが収集されたのかを意識しながら、より正確な評価を行えるよう努めていきます。

データ・アナリティクス入門

仮説検証で開く課題解決の扉

本質はどう捉える? 問題解決プロセスでは、「何が問題なのか(what)」「どこに原因があるのか(where)」「なぜその問題が発生しているのか(why)」の3点に対して、徹底的に検証することが重要であると学びました。 原因をどう探る? また、whyの部分については、3Cや4Pといったフレームワークを活用することで、より具体的な原因の特定と分析が可能になることが印象的でした。各アプローチにおいて、仮説を立て、既存または新規のデータを用いて検証する作業が鍵であると感じています。 新たな視点は? 特に、売上データの結果は複合的な要因が重なっており、一概に原因を絞るのは難しいという現実があります。それにも関わらず、自分なりにここが原因だろうという仮説を立て、検証を通して新たな視点や解決策につなげることの重要性を実感しました。今日学んだフレームワークを活用しながら、今後もさまざまな課題にチャレンジしていきたいと思います。

クリティカルシンキング入門

議論を変えるイシューの秘密

どんなイシューが有効? イシューの設定がまず何よりも重要です。どのようなイシューを立てるかによって、分析の方向性や解決策が大きく変わることを学びました。たとえば、「問い合わせ対応の長時間化がクレームの原因になっている」という例題では、「待ち時間を減らすためにはどうするか」と「問い合わせ件数を減らすためにはどうするか」という複数の問いを設定することが可能です。 議論の目的は何だろう? また、日常的な議論の場では、まず議論の目的を明確にすることが大切です。問いの形式にすることで、全員が何に注目すべきかを共有でき、議論が進む中で設定した問いからの逸脱を防ぐことができます。さらに、各参加者の発言を後から振り返り、内容が当初の問いに沿っているか、導かれた方針が妥当であるかを検証することが重要です。こうしたプロセスにより、1つの問いに偏ることなく、多角的な視点からアプローチし、見落としがないかを常に意識することが求められます。

データ・アナリティクス入門

復習と分析で磨く未来のスキル

授業で何が足りた? ライブ授業を通して、学んだ内容が実際には抜け落ちていると感じることがありました。日常にうまく落とし込めず、知識が血肉になっていないため、再度復習する必要性を強く感じています。一方で、学習初期から具体的な指針があったおかげで、課題に対して何をすべきかが明確になり、その成長を実感できた面もあります。 分析で自信は得られた? また、採用状況の分析は、初めから取り組んできたこともあり、これまでの経験が自信につながっています。繰り返し実践する中で、数字を扱う技術をさらに磨けると感じており、新たなデータにも積極的に取り組みたいと考えています。 異動後の数字はどう変わる? この春に異動があり、新しい職場でどのような数字に触れることになるのかはまだ不明ですが、現職場ではこれまでの分析手法がレガシーとして共有されています。新たな環境でも、数字を扱うスキルを引き続き活かし、積極的に取り組んでいきたいと思います。

データ・アナリティクス入門

比較で見つけた戦略のヒント

同条件で比較する? 分析とは、同じ条件下での比較を行うことだと思います。たとえば、「Apple to Apple」の視点で比較を行うことで、分析の目的やゴールが明確になり、結果の精度も向上します。また、分析を進める際は、仮説を立てることで、目的外の迷いに陥らずに進められると感じています。 ブランディングはどう? 現在、私はプロダクト開発とコンテンツ企画・運営に携わっており、いずれも競合が存在する中で、自社のブランディング戦略を考える必要があります。ただ、現状ではプロジェクトオーナーの感覚や経験に頼る部分があり、より現実的かつ客観的な視点を取り入れる余地があると感じました。 課題整理は進んでる? そこで、まずは各プロジェクトの目的とゴールを再整理し、現時点での課題を明確にすることが重要だと考えています。その上で、適切なフレームワークやツールを活用した分析を行い、より精度の高い戦略策定を目指していきたいと思います。

データ・アナリティクス入門

実践で磨く!データ活用のヒント

学びはどんな感じ? これまでの学習を通じて、データ分析の基礎から実践的な活用方法まで、一連の流れを体系的に学ぶことができました。単なるデータ処理にとどまらず、どのように課題を設定し、仮説を立て、検証するかという思考プロセスの重要性を改めて実感しました。 重要な点は何? 学習内容を振り返る中で、自分にとって重要なポイントを再確認することができました。今後は、業務の提案文書作成時に、分析を活用して根拠を明確に示す取り組みを進めたいと考えています。また、日頃から目にするデータがどのように役立つかを意識する習慣を身に付けたいと思います。 次への一歩は? さらに、知識の定着を図るため、学習を終わらせずに統計検定の取得を目指すとともに、業務での分析においては各種フレームワークを適用し、実践で活かしていきます。具体的には、営業店の業務負荷の要因分析を実施し、仮説を立ててデータに基づく検証を行いたいと考えています。

戦略思考入門

理想と現状をつなぐ戦略の鍵

戦略の基本はどう? 戦略の基本的な考え方やフレームワークについて、知らなかった点が多かった分、大変学びがありました。特に、理想の姿(ゴール)を明確にし、そこに向けて現状とのギャップを埋めていく考え方は、今後の業務でも活かしていきたいと感じました。 ゴールはどう決める? 今後は、これまでの背景や個人的なやりたいことに基づく計画ではなく、状況に応じたフレームワークを適用し、明確なゴールを目指していきたいと思います。たとえば、SWOT分析は基本となるフレームワークだと捉えており、他社の事例を参考にしながら自社にあてはめることで、より効果的な戦略策定ができると感じました。 戦略構築はどう進める? これまでの実務経験も参考にしつつ、今後はフレームワークに沿って戦略を構築していきたいと考えています。そして、そのフレームワークを活用できるかどうかは、今後の戦略策定の中でメンバーの意見も取り入れながら進めていく予定です。

クリティカルシンキング入門

MECEで広がる分析の世界

分析計画の狙いは? MECEを意識して分析計画を立てることの重要性について学びました。分析はまず大局的な視点から始めることが大切です。傾向を掴んだとしても、それが必ずしも正しいとは限りません。そのため、正確性を確認するために、必要に応じてさらに詳細に分解する必要があると感じています。 分解の意味は何? 実際に行っているデータ分析について考えたところ、MECEを満たしているようではあったものの、それを意識的に行うことはできていませんでした。分析のスタートポイントとして分解を意識して、分析計画を立てる必要があると強く感じました。 感覚分析の問題点は? これまでの分析は感覚的に行っていた部分がありました。分析計画は立てていましたが、分解に着目するということが不足していました。解がスタート地点であることを学んだので、今後は分析計画の段階で、MECEなど今回学んだロジックに沿って計画が立てられているかを確認していきます。
AIコーチング導線バナー

「分析」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right