データ・アナリティクス入門

集めて比べる、学びの第一歩

ライブ授業をどう捉える? ライブ授業を通して、分析においては「比較」が非常に重要であると改めて実感しました。限られた情報の中で考察を進めると、様々な視点が生まれる一方で、正確な回答を導き出せない場合もあることが認識できました。 データ準備の確認は? データ分析を実施する際には、まず必要なデータをしっかりと揃えることが不可欠だと学びました。新しいシステムの導入を検討する場合、価格、使用頻度、使用者の経歴、最も利用される時間帯など、複数のデータを準備し、事前に確認すべきポイントを絞り込む必要があります。 集計と比較はどうする? その上で、まずは確実にデータを集め、その後に集めたデータを比較しながら、必要な情報や懸念点を検討していくことが大切です。さらに、足りない情報がないかを意識しながら、新しいシステムに求められる要素を見極めるプロセスの重要性を再認識しました。

データ・アナリティクス入門

フレームワークで未来を拓く

3C・4Pの活用法は? 3C・4Pなどのフレームワークを活用して仮説を立てる重要性を改めて実感しました。なんとなく思いついた仮説では、他に考えられる可能性を見逃してしまう恐れがあります。一方で、フレームワークを用いることで、仮説の検証に必要な分析も効率よく進められるようになりました。 株式事務の仮説立案は? また、株式関連の事務においては、過去の経験や従来の分析結果に捉われず、さまざまな視点から仮説を立て、検証していくことが大切だと感じています。そのため、3C・4Pを活用し、複数の仮説を意識しながら業務に取り組むよう努めています。 実務検証の流れは? さらに、実際の業務では4P・3Cのフレームワークを使って分析を行い、課題に対して複数の仮説を出すことを徹底しています。そして、仮説の検証に必要なデータの抽出や分析も合わせて行うことを意識して作業を進めています。

データ・アナリティクス入門

アンケート成果を活かすデータ分析術

アンケート設計のコツは? デジタル化を進めるにあたり、今後お客様アンケートを実施する予定があります。今週学んだことを活かして、アンケートの集計に役立てたいと考えています。アンケートには定性的および定量的な質問がありますが、定量的な質問に関しては、単に平均値のみでなく、中央値や最頻値も確認し、傾向やばらつきを把握することが重要です。質問を設計する際には、事前に仮説を立て、それを証明するための最小限の質問を設定することが求められます。 結果報告の工夫は? まずは直近のアンケート業務で学びを実践し、集計後にはそれをもとに報告を行う予定です。その際には、結果をどのようにビジュアル化して示すかを考慮します。単純に平均値や最も多い回答を示すだけでなく、仮説に基づいたアンケート設計により、得られた結果から示唆を引き出し、それに基づいて施策をストーリーとして検討することが大切です。

データ・アナリティクス入門

見える化で進化する学び方

なぜ計画的分析が必要? 「やみくもに分析しない」という考え方が特に印象に残りました。アウトプットのイメージは人それぞれ異なるため、事前にすり合わせを行うことは、自身の経験からも非常に重要だと実感しています。実際に、プロセスを「what」「where」「why」「how」に分けて見える化することで、優先順位をつけて整理しながら分析を進めることができたため、この手法を今後も続けていきたいと考えています。 どう使うと効果的? また、分析の際に習った複数のフレームワークを活用することは、とても有効でした。特に、複数人で作業を行う場合、様々な切り口からのアイデアを出し合い、一度収束させることで、抜け漏れを防ぎながら優先順位を明確にできたという実感があります。さらに、バイアスに関しても事前に目線を合わせることができたため、今後もこの方法を積極的に取り入れていきたいと思います。

アカウンティング入門

数字の向こうに広がる学びの世界

利益の要因は何? P/Lを分析する際には、まず財務の視点から利益を押し下げる要因が何かを明確にすることが重要です。具体的には、売上原価、販管費、営業外収益など、各項目がどのように利益に影響を与えているのかを検証しています。 ビジネス観はどう? また、単に数字を追いかけるだけではなく、自社のビジネスモデルや価値観と照らし合わせ、P/Lの内容がコンセプトに合致しているかどうかも考慮する必要があると理解しました。 変動を見るポイントは? 毎月、P/Lを確認する中で、一時的な大きな変動や長期的な傾向を把握することにも力を入れています。その上で、売上原価や販管費の構成が自社の理念に適しているかを詳細に分析しています。 意見交換の意義は? こうした分析結果をもとに、財務部門や経営層と意見交換を行うことで、より実践的な経営判断につなげることができると感じました。

戦略思考入門

ターゲット力で差をつける戦略術

ターゲットは誰? ターゲット顧客の明確化は、差別化戦略を構築する上で非常に重要だと感じました。どの顧客層に注力するのかをはっきりさせることで、何を行い何を行わないかといった戦略の基盤が固まります。また、外部環境を把握するためのPEST分析や、内部資源を評価するためのVRIO分析といった手法を組み合わせることで、自社の強みを活かした戦略立案ができると実感しました。 模倣と組織はどう見る? さらに、VRIO分析においては特に模倣困難性と組織的観点に注目することが重要です。他社にはない自社独自のリソース、たとえば蓄積された暗黙知や歴史、文化などを言語化し整理することで、企業としてのユニークな価値が際立つと考えます。また、ポジショニング理論とRBVの視点を併せ持つことで、コストリーダーシップなど自社の立ち位置を多角的に見直し、戦略を更に強化することが可能になると思います。

データ・アナリティクス入門

問題解決と最適化に役立つ具体的手法を学ぶ

問題解決の順序がカギ? 問題解決のプロセスについて、「What、Where、Why、How」の順に進めることの重要性を再確認しました。問題理解と適切な対策を講じるためには、なぜなぜ分析を行い、真の原因を見つけ出すことが不可欠です。このプロセスは、提案時の逸注分析やプロジェクトのトラブル、営業活動におけるクレーム対応などの場面で活用できます。 A/BテストでCROを最適化するには? また、A/BテストがWebマーケティングにおけるCRO(コンバージョン率最適化)の手法の一つとして有効であることを学びました。この手法は事業プランの策定時にも有効です。具体的には、異なる案を用意して比較し、優れた点を組み合わせてブラッシュアップしていく方法です。マーケットプランにおいても、自社案と協業先の案を出し合い、検証や補完を行うことで、より確実なプランを作成することができます。

アカウンティング入門

P/Lで読み解く戦略の扉

コンセプトとP/Lは? P/Lの見方を理解する中で、企業のコンセプトとP/Lのバランスが非常に重要であると実感しました。P/Lから仮説を立て、どの部分で利益を生み出していくのかを考察することで、会社の方向性や戦略の正しさが見えてきます。 戦略の整合性は? その上で、まず自社の分析を改めて行い、コンセプトと利益構造の整合性や、今後の戦略・方向性が適切に合致しているかを確認することが大切だと感じます。具体的には、以下の点を重視しています。 ① 戦略立案時、特にキャンペーンや市場拡大を目的とする場合に、P/Lを基に戦略の妥当性を検証する。 ② コンセプトとP/Lの分析結果から、個々の施策が会社全体の戦略と一致しているかを判断する。 ③ 自社の定期的な分析と共に、競合他社の動向を把握し、コスト競争か付加価値の提供かを見極めた上で、適切な競合対策を検討する。

戦略思考入門

業界データと周辺情報で見つける成功戦略術

規制産業のデータ推測方法は? 業界データから個別企業の売上や利益を推測することを学びました。タクシー会社のような規制産業では特に、実務で手に入らない情報を周辺データから類推する習慣をつけていきたいと考えています。 手術機器市場の分析方法は? 私は、手術機器の医療機器メーカーのマーケティングを担当していますが、クリニックで手術が行われているかどうかの統計データがなく、これまであまり分析をしていませんでした。今回の演習を通じて、他のデータから類推できる方法を検討してみたいと思います。 2025年戦略の成功要因は? 2025年のマーケティング戦略立案時には、自社のビジネスの特性や業界の特性を理解し、フレームワークを活用して戦略を立てたいと考えています。その際、表面的な分析に留まらず、本質を捉えた分析を行い、社内のメンバーを巻き込みながら方向性をまとめたいです。

データ・アナリティクス入門

全体像から磨く問題解決術

今週の学びは、以下の2点です。 問題解決の手法は? まず、問題解決のフレームワークである「MECE/もれなくダブりなく」を徹底的に磨くことの重要性を感じました。この切り口で問題や課題に取り組むと、全体像の解像度が格段に上がるという実感があります。 問題の特定方法は? 次に、最初に問題を正確に特定することがポイントであると学びました。最初の当たりがずれてしまうと、その後の原因分析や課題解決の方向性にも影響が出るため、問題や原因が的確に把握されているかを常に確認する必要があると感じています。 対策の基準は? また、これらは業界や具体的な問題解決の種類を問わず、普遍的なスキルであると理解しています。日常業務では他者の解決策を参考にする機会が多いですが、それぞれの対策が正確に特定された問題とその原因に合致しているか、今後も意識して確認していきたいと思います。

データ・アナリティクス入門

仮説×分析!新たな解決のヒント

仮説検証はどう進む? 問題解決においては、複数の仮説を立て、その仮説を迅速に検証していくプロセスが重要です。特に、3Cや4Pといった既存のフレームワークを活用することで、仮説の立案は効率化し、スピードが向上します。 分析方法は何が変わる? これまで、webサイトの売上やアクセス分析においては、場当たり的に変動要因を探っていた面がありました。しかし、3Cや4Pなどの枠組みを取り入れることで、従来気づかなかった切り口や新しい視点からの仮説を導き出すことが可能になると実感しました。 選択肢は広がる? また、3Pや4Cをはじめとする各種フレームワークを再度学ぶことで、仮説の立案における選択肢が広がります。どの状況にどのフレームワークが適しているのかを理解し、これらを積極的にwebサイト分析に活用することが、より効果的な問題解決につながると考えます。

データ・アナリティクス入門

段階的アプローチで着実成長

講義で何を実感した? これまでの講義を通じて、分析のフレームワークや思考の順番をしっかりと理解することができました。段階を追って課題を解き明かすことで、最初から一気に取り組むよりも、より複雑な問題に対処できると実感しています。 課題設定はどう進む? データ分析の業務では、ただ急いで分析を実施するのではなく、まず解決すべき課題を明確にし、仮説を立てながら進めることが大切だと感じます。また、必要に応じてデータを扱う関係者と意見交換しながら検証を進めることで、より確実な結果にたどり着けると思います。 日々の工夫は何? 今後は、学んだフレームワークや仮説検証の流れを自分の言葉で他者に説明し、日々の業務に取り入れる工夫をしていきたいと考えています。小さな実践を積み重ねることで、自分の思考プロセスが自然に身につき、学びを習慣化できるよう努めていきます。

「分析」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right