リーダーシップ・キャリアビジョン入門

リーダーシップを磨くチームの秘訣

マネジアル・グリッド理論とは? 優秀なリーダーの行動を分析するためのマネジアル・グリッド理論は、リーダーの行動を「人への関心度」と「業務への関心度」の二つの軸で評価することで、リーダーが周囲に与える影響を客観的に分析する手法です。 パス・ゴール理論の重要性 一方、状況適合理論の一つであるパス・ゴール理論は、リーダーが「環境要因」と「部下の適合要因」を考慮し、適切な行動をとることが重要であると説きます。具体的には、リーダーは同じ部下であっても、業務や職場の状況に応じて支援の仕方を柔軟に変える必要があります。さらに、チーム内でも、部下の能力やスキル、自己解決意欲に応じてリーダーシップのスタイルを調整することが効果的です。 リーダーとしての自己振り返り 自身の仕事で振り返ってみると、メンバーに仕事を任せる場面や新たなチームを結成する場面で、この理論を活用できると感じます。 メンバーへの適切な指示方法は? メンバーに仕事を任せる際には、例えば既存業務において、経験やスキル、自発性・成長意欲の異なるメンバーに対して、指示や支援の程度を調整します。A氏には自立性を活かし、目的とゴールを伝える程度で任せます。一方、B氏には課題点を共有しつつ意見を募り、C氏には初期のタスクを具体的に教えた上で任せます。新規業務では、特にC氏に対して細やかな指示と進捗管理を行います。 チーム結成時のリーダーシップ選び また、今後チームを結成する際には、マネジアル・グリッドを利用してサポート役を選定したいと考えています。私は自身を「タスク志向型」もしくは「タスク志向型と中間型の間」と認識していますが、「社交クラブ型」のサブリーダーを組み合わせることで、チームが一層円滑に機能するでしょう。 フィードバックの重要性は? 重要なのは、部下の適合要因を把握し、それに基づいてリーダーシップの方法を試行錯誤し、適応させることです。また、マネジアル・グリッド理論を基に、自身のリーダーシップ行動についてメンバーや上司からフィードバックを求めたいと思います。これにより、他者の認識と自分の認識に差異がないか確認し、さらにはメンバーや上司がこのアプローチに満足しているか評価してもらいたいです。メンバーからの直接的な評価が困難な場合、上司に間に入ってもらうことを考慮しています。

データ・アナリティクス入門

プロセス重視で解決策を見つける秘訣

解決策立案の重要性を痛感 今回は、問題解決のプロセスである「What」「Where」「Why」「How」の「How(解決策の立案)」について学びました。このステップでも、「What」「Where」「Why」同様、複数の仮説を立てることが重要で、仮説の質が問題解決の精度に大きな影響を及ぼすことを改めて実感しました。プロセスに分ける、対概念を活用し対に分けるといったアプローチを学びました。 最適解の選び方を知ろう また、最適な解決策を選択する際には、複数の判断基準を持ち、その重要度に基づいて重み付けを行い、基準を揃えて総合的かつ定量的に評価することで、決めつけや思い込みを排除し、客観性と説得力を担保できると学びました。 仮説検証をハイサイクルで さらに、仮説の確からしさを求めすぎず、仮説検証をハイサイクルで実施することで、より良い仮説検証が行われ、結果として本質的な解決策に結びつくことを理解しました。 共通の留意点とは? 「What」「Where」「Why」「How」の各プロセスで共通して留意すべきポイントは以下の4点です。 1. 目的と仮説を明確にする。 2. 複数の仮説を立てる。ビジネスフレームワークや「分ける」という概念を活用する。 3. 仮説を検証する際は、基準を揃え、分析結果を基に定量的に評価する。 4. 仮説の設定と検証をハイサイクルで行う。 計画策定に向けた意識改革 次期中期事業計画の策定時には、現場で培った経験や勘で導き出した答えを、ビジネスフレームワークを利用して正しいプロセスを一つずつ踏んで答え合わせする意識を持ちたいと思います。ビジネスフレームワークの選定、指標や基準の設定、仮説の構築、データの収集・比較・定量評価、仮説の検証、本質的な解決策の選択など、あらゆる場面で客観性と説得力を備えた事業計画を策定することを目指します。 日常業務での実践ポイント 日々の現場業務の中でも、以下の2点を意識して深く考える癖を身に付け、具体と抽象を行き来することを習慣化したいと思います。 - より高い視座とより広い視野でものごとを見つめるマインドセットを持つ。 - 仮説の確からしさを求めすぎず仮説検証をハイサイクルで実施する。 心に留めておくべきキーワードは「一つ一つ丁寧に」「プロセスを重視する」「胸を借りる」です。

戦略思考入門

戦略的リーダーを目指す私の挑戦

理想のリーダー像は? 自身の理想像を戦略的に考えることは重要です。私の理想像は、40歳、または中間管理職として、どんな状況でもチームを率い、障害を乗り越えられるリーダーになることです。つまり、一貫性があり、成果を上げる能力に優れ、信頼されるリーダーを目指しています。そのためには、一貫性のあるビジョンや目標を掲げる戦略的思考が必要です。具体的には、ゴール設定と的確なルートの選択が鍵となります。そして、その実現には、実務スキルと経験の蓄積が欠かせません。 戦略思考をどう実践する? 個人の生活においても、戦略的思考を実践することが思考のトレーニングになります。特に、week4で学んだ"選択"を実践してみることにしました。その際の判断基準として、客観的な視点を持つことが重要です。また、優先順位をつけることは、何を優先するかを決めるだけでなく、優先しないものを捨てることでもあります。 案件の方向性はどう? 具体的なアプローチとして、本部戦略との整合性と市場ニーズの高さを2つの軸にして、現在の案件をマッピングしました。これによって、地域事業開発の方向性を見極めることができました。本部戦略と整合性が高く、市場ニーズも高い案件は本部で進めることが多いため、短期的な投資が見込まれます。しかし、整合性は低いものの市場ニーズが高いエリアは、投資を実現するためのストーリーが必要です。このストーリーを構築する際には、戦略思考の活用が求められます。 事業分析の鍵は何? 検討ポイントとしては、市場での当社の優位性、短期間での実現および利益貢献の可能性、対応できるリソースの有無、事業の経済性などを挙げます。特に市場での優位性と事業の経済性を戦略思考のフレームワークを使って分析したいと考えています。そして、これらを戦略方針に落とし込み、関係者のフィードバックを受けて投資実行の必要性を判断していく計画です。 実行のステップはどう? 実行段階として、まず市場ニーズの高いものから選び出し、本部戦略との整合性が高いものはある程度本社とリソースを分担します。そして、市場ニーズが高いが本部戦略と整合していないものについては、さらに検討し、スコアをつけて優先順位を決めます。最後に、本部からフィードバックを受け、ポジティブなものだけを選び、現地での開発作業を進めていきます。

データ・アナリティクス入門

データで掴む!プロダクト成長の鍵

定量分析の重要性は? 目的を明確に持つことや分析が本質的に比較であることを改めて理解し、以下の観点で新たな気づきを得ました。まず、定量分析の重要性です。適切な比較を行うためには、目の前の事象やデータだけでなく、「Aがない場合」といった事象の背景も考慮に入れ、比較対象を慎重に選定する必要があります。また、仮説を立てることで分析の精度を上げることができると感じました。 アプリ戦略と仮説の関係 現在、私はアプリのプロダクトマネージャーとして、プロダクト企画や戦略立案を担当しています。また、自社事業でアプリやプロダクトを使って事業成長戦略を描くというミッションを追っています。市場データや競合比較、ユーザーの売上データ等を用いて仮説を立て、精度の高い分析を目指しています。この手法は仮説の精度を向上させるための手段となり得ると思います。 ユーザーのペインとは? 分析が役立つと考えられる場面は以下の通りです。まず、ユーザーのペインがどのような数字に表れているかについてです。特に、弊社のヘルスケアアプリにおいて、ユーザー記録データの推移と一般的な健康データを比較し、特定のセグメントにおけるペインを特定できる可能性があります。また、国内外の市場比較から次世代市場の動きや外資企業の動向予測が可能になるとも考えています。 市場分析に必要なステップ 市場分析においては、目的の言語化が重要です。市場分析は主に「自社プロダクトの市場成長性と方向性決定のため」「自社事業成長戦略のポジショニング決定のため」の二つの観点を想定しています。目的ごとに仮説を立て、分析軸を決めることが必要です。具体的には分析目的をMECEで言語化し、優先順位を付けて最上位から着手します。何をどのように比較するか、仮説が本質的な目的から外れていないかを確認し、ゴールまでの計画を立てます。 データ分析で見える強みと弱み 自社プロダクトの分析には、「あるべき姿」と現状のギャップを言語化し、そのプロセスとしてデータ分析を活用します。市場ポジションの分析では、自社プロダクトの利用状況推移と同セグメントのアプリの一般的な状況を比較し、強みや弱みを特定します。また、ユーザーのペインを見つけるためにデータ分析を行い、アンケート結果やユーザーインタビュー結果を再評価し、インサイトを見出します。

戦略思考入門

戦略思考で拓く学びの未来

目標はどう決める? 戦略志向とは、適切なゴールを定め、現状からそのゴールまでの最速かつ最短の道筋を描くことだと改めて実感しました。また、バリューチェーンの視点をより深く理解することで、生産性向上のヒントが得られることを痛感しました。今まで「分かったつもり」で進めていた部分を改め、指数関数的な変化に対して敏感に反応する必要性を感じました。 返報性を活かすには? さらに、返報性の原則を戦略的に活用する重要性にも気づきました。本質を見抜き、仕組みを捉えるためには、とにかく実践して自社の3C分析を試みることが大切だと感じています。同時に、最新のテクノロジーや新たな知識を継続的に学び続ける必要性も強く感じました。 規模調整はどうする? 規模の経済性については、コンサルタントの数が増えることで、一人当たりの固定費を下げる可能性があると理解しました。しかし、社員を増やしすぎるとコミュニケーションや各種管理コストが増大するため、フロントの生産性を最大化できる最適な規模を見極めることが非常に重要であると考えました。また、習熟効果においては、入社後の成長過程や、先輩の知見を若手に効率よく移転する仕組みを再評価すべきだと感じました。 AIで採用は変わる? ネットワークの経済性の観点から、金融業界以外でも適切なコンセプトを設定することで採用決定にかかるコストを削減できる点は大いに示唆に富んでいました。目の前のお客様への対応に加え、外部環境そのものの変化、特に生成AIの進展によるリクルーティングビジネスへの影響を、より深く分析する必要性があると痛感しました。指数関数的に進化する技術に遅れをとらないため、自社でもその活用方法を積極的に模索していく所存です。 採用戦略はどう進化? 最後に、データに基づいた人材発掘や自動化された評価・選考、企業ニーズの高度な分析、最適なマッチング、リモート面接・契約支援、さらには入社後のパフォーマンス追跡といった、一連のリクルーティングビジネスのバリューチェーンについて学ぶ機会は非常に有意義でした。また、自社のビジネスプロセスの本質を見極め、2フロア分の家賃負担と8割の在宅勤務という現状を踏まえ、社員の最適な増員シミュレーションを行うことで、固定費の軽減と利益率の向上を図る重要性を再認識しました。

リーダーシップ・キャリアビジョン入門

後輩育成の秘訣と学びのコツ

新メンバー指導のポイントは? 学びとなった点は以下の3つです。 まず、新メンバーの指導において、以下の3点を必ず押さえることが重要だと感じました。1つ目は、初めに「何をどこまで任せるか」を明確に伝えることで、相手との共通理解を得ることです。2つ目は、その仕事の意義や目的を伝え、「なぜやるのか」を理解させることです。これにより、相手が自律的に動きやすくなります。3つ目は、相手の経験や能力を確認し、それに応じたフォロー体制を整えることです。 学び方のコツとは? 次に、学び方のコツとして3つあります。1つ目は言語化で、考えを言葉にし、漠然とした考えで終わらせないようにすることです。2つ目は教訓化で、各ケースを客観的に分析し、普遍的な教訓を引き出すことです。3つ目は自分化で、引き出した教訓を自分の状況に照らし合わせ、自分の課題や弱みを改善するために考えることです。 リーダーシップの育み方は? また、リーダーシップの三要素について学びました。能力と意識を掛け合わせることで行動が生まれるというもので、私の場合は能力に偏っていたため、明るく前向きでオープンな意識を、業務を通じて日々心掛けていきたいと思います。 ジュニアメンバーへの効果的な指導策 チーム内のジュニアメンバーに業務を依頼する際には、この学びを活かし、特に相手の経験や能力の事前把握を重視したいと思います。以前はフォロー体制が不十分で、相手の信頼を得られていないこともあったため、改善する所存です。リーダーシップに関しては、「明るく機嫌よく前向きでオープン」を意識し、信頼されるリーダーを目指したいです。現在は意識にムラがあるため、人との関わりの中で積極的に意識していきたいです。 指導プランの具体例は? ジュニアメンバーへの指導プランとして、月に一度のロープレを実施し、経験や能力を丁寧に聞き取ることで、相手の視点に合わせたフォロー体制を築き、信頼を得ることを目指します。一方、意識面の行動プランとしては、「明るく前向き、機嫌よくオープン」を実践するために、常に笑顔を忘れず、終礼時に適度に自分の情報を開示し、ジュニアメンバーとの関係性を深めていきます。また、週の定例ミーティングでは、ジュニアに考えさせるような意見や指摘を心掛け、彼らの成長をサポートしたいと考えています。

クリティカルシンキング入門

問い続ける力が未来を創る

初めての学びは? Week1からの学びを振り返り、重要と感じた項目を整理しました。これを同僚に伝えるべきだと考えています。 問いをどう継続? まず、「問いを意識し続ける」ことが大切だと感じました。問いの意識を緩めてしまうと、物事を漠然と受け入れてしまうリスクがありますので、常に問いを意識し続ける習慣が必要です。また、経営者などの上位層の視点で問いの意味を考えることも重要です。現在のポジションの考え方では上位層の課題を理解するのは困難ですので、上位層の視座、視野、視点で問いを考え、課題を具体化する必要があります。 常識に挑む理由は? さらに、「そもそも」を意識し続けることが大切です。人は現在の業務を素直に受け止め、変えたくないと思う傾向があります。しかし、常識やルールに対しても常に疑問を持つことが求められます。資料作成も軽視せず、理解を早めるためのひと手間を惜しまないことが重要です。打ち合わせを口頭のみで行うのは相手に失礼であり、時間を浪費する行為ですので、資料を前提として、効果的に理解を得るための工夫を心がけるべきです。 経営層の視点は? 経営企画を担当している立場としては、様々な問いを持ち、課題や施策を検討していきたいと考えています。例えば、「全社の売上・利益を最大化するには?」といった問いに対する解答を見出すため、経営層・上司の視点を意識し、必要な情報を捉えることが重要です。また、根拠となるデータ収集・分析も重要なプロセスであり、そのための環境整備にも取り組んでいきたいと考えています。 報告の意義は? 業務上、毎月定例の業績報告があり、課題や施策の検討機会を得ることができます。この報告準備を課題・施策を考える契機とし、報告対象である経営層が必要とする情報を仮説しながら組み立てることを継続的に実施したいと思います。 研鑽の成果は? 自己研鑽の一環として、同僚や部下へのレクチャーを行うことで、自分のスキルアップにも繋がると考え、社内で勉強会を開催していきたいと思っています。勉強会の内容は、業務上でのクリティカルシンキングや戦略的思考を取り入れたものにし、業務と関連させることで理解を深めてもらいたいと考えています。開催後には、内容が本当に役立ったかを問い続け、常に反省し、内省する意識を持ち続けたいと思います。

データ・アナリティクス入門

データ分析で解決策を見つける旅

問題解決とデータ分析の関連性とは? 今週の学習を通じて、問題解決のプロセスとデータ分析の関連性について学ぶことができました。特に印象に残ったポイントは、問題解決のステップを「What(現状把握)」、「Where(問題特定)」、「Why(原因究明)」、「How(対策検討)」という形で整理するアプローチです。このステップを行き来しながら問題を深掘りしていく方法は、データ分析で何から取り組んで良いかわからない時に役立つ道筋を示してくれるため、非常に効果的だと感じました。 STARフレームワークの有効性は? 現状把握においては、問題を「あるべき姿」と「現状」のギャップと捉えることが重要です。このギャップを、STAR(Situation:状況、Target:あるべき姿、Action:行動、Result:結果)フレームワークを活用することで、より具体的に問題解決のプロセスをイメージしやすくなります。また、問題を因数分解することで、要素を細分化し問題のある箇所を特定でき、優先的に対応すべきところが明確になります。逆に、不要な範囲を明確にすることで、効率的に問題解決に繋がることも新たな発見でした。 ロジックツリーとMECEの効果は? 問題の因数分解にはロジックツリーが効果的で、層別分解や変数分解(掛け算)の2種類を問題に応じて使い分けることで、より効果的に分析が行えます。MECEの概念も重要で、「抜け漏れ、ダブりなく」問題を捉えることが重要です。 データ分析の具体的な活用例は? 今後、学んだ内容は患者の受診動向調査に活用できると考えています。どのような患者が、どの診療科をどのくらいの頻度で受診しているのかを分析することで、患者のニーズや医療機関の利用状況を把握できます。ただし、実際に活用するためには、現在のデータが分析に必要な要素を網羅しているかを確認する必要があります。 分析の目的は何か? データ分析の目的は、大きく分けて二つです。まず一つ目は患者サービスの向上で、ニーズに合った医療サービスを提供するために分析結果を役立てます。二つ目は病院経営の改善や効率化で、患者の利用状況を分析することで、リソースの最適化が図れます。さらに、定量分析だけでなく定性分析を利用することで、サービス提供時の運用上の問題を解決する可能性もあります。

データ・アナリティクス入門

データ分析で未来を築く!ナノ単科の意義とは

なぜ分析の目的を見失わない? まず、「何のために分析するのか」という「目的」を見失わないことが重要です。その上で、その目的を果たすためにはどのようなデータをどのように分析すれば良いのかという「仮説」を立てることが必要です。その仮説に基づき、必要なデータを収集し「意味を読み取る」ために適切にデータを加工し、その分析結果から新たな発見を導き、より良い意思決定を行うことが求められます。 データビジュアル化の役割とは? データ分析の一連のプロセスにおいて「意味を読み取る」ためには、代表値である平均値および中央値、ばらつき度合いを分布として示す標準偏差を用いた全体像の把握が重要です。また、それらを一目で容易に把握するためにデータのビジュアル化も欠かせません。そして、ビジュアル化されたグラフを見る前に、それまでに得た定量情報や定性情報をもとに自らの解釈と仮説を立て、その解釈・仮説と実際のデータを比較するアプローチを繰り返すことで、分析を深めていきます。 データ分析の順序を守るには? いざデータを前にすると、「仮説を立ててデータを見る」のではなく、「データ同士を比較して仮説を立てる」という癖があることに気づきました。この順序を間違えると意味がなさず、分析を深堀りできません。自然と正しいプロセスを踏むことができるようになるまで、意識して練習を繰り返したいと思います。 予算策定に活かす分析手法は? 直近では、予算策定にこのアプローチを使います。過去の売上や原価をもとに、標準偏差、加重平均、幾何平均、中央値を使ってより確からしい代表値を出し、定性情報も加味して来期の予算を策定します。この際、「仮説を立ててデータを見る(仮説との比較)」ことを意識して取り組みます。また、その代表値にした理由や定性情報の扱いについて第三者と共有し、対話を重ねることで、納得性のあるものとして示すことができるように努めたいと考えています。 今後意識する改善点は? 今後、以下の点を意識して取り組みます。 1. 標準偏差、加重平均、幾何平均について再度勉強し、特徴を深く理解する。 2. 「結論ありき」や「経験と勘」に頼らず、データ分析のプロセスを一つずつ丁寧に踏む。 3. 定性情報を「落としどころ」や「決め打ち」の要素として扱わないように意識する。

クリティカルシンキング入門

数字を視覚化して成果を上げる方法

数字を分解し要素を見極めるには? 数字を分解し要素に分けることで、どこに差分があるのかを明確にすることが重要です。数字そのものではなく、割合や順番でとらえることで、差異が見えやすくなります。そのためには、割合や順番をグラフなどで視覚化すると効果的です。 多様な観点からの切り分け方は? 分解の切り口には様々な方法があります。多様な観点から切り分けることで、特徴や差分を特定していきます。特徴がある要素を見つけた場合、他に差異がないかを引き続き分解して検証します。本当にそう言い切れるかという視点で深掘りすることが必要です。 もし分解して特徴が見つからなくても、それ自体が間違いではなく、差分がないことがわかるという成果となります。切り分け方に固執せず、実際に手を動かしてみることが大切です。MECEに基づく切り分けには、層別、変数、プロセスがあります。MECEを適用する際には、最初に「全体」とは何かを定義し、全体の範囲を決めることが肝心です。 分解が市場調査にどう役立つ? これらの方法は、市場調査や競合他社の分析に役立ちます。例えば、同じ商品やサービスでも各社がどのように成り立たせているかを要素に分解し、差異性を探ることで、仮説を立てることにもつながります。また、業務システムの改善案件でも、どのプロセスにどれくらいの時間や人手がかかっているのかを分解することで、改善策を見つける手助けとなります。 プレゼン資料をより説得力のあるものにするには? データを加工する際には、クライアントへの資料をより伝わりやすく、説得力のあるものにすることが求められます。数字そのものではなく、割合や順位といった形で意味を視覚化し、要素ごとに差異性や特徴を明らかにすることで、しっかりと説得力のあるプレゼンが可能となります。 全体の定義はなぜ重要? まずは全体の定義から始め、チームで共有することが重要です。全体の定義ができたら、次は分解の切り口について皆でアイデアを出し合います。それを元に切り口ごとで差異や特徴を分析し、必要があれば更に深掘りします。特徴や差異が出ない場合でも、その事実を記録として残すことが重要です。数字はそのまま使わず、全体の中の位置づけやインパクトのある要素を際立たせるなど、ビジュアル化して関係者の共通認識とすることです。

クリティカルシンキング入門

イシュー解決力で実務が変わる瞬間

今週の学びは何? 今週、このコースの学びを整理し直し、3つの重要な点を改めて認識しました。 問いの意義は何? 第一に、「問い」が何かを考え、それを明確にすることは非常に重要です。イシューを特定することで、なぜその問題について議論しなければならないのか、その目的がはっきりします。 イシューをどう特定? 第二に、イシューを特定するためには、既存のデータを様々な角度から分析し、ピラミッドストラクチャーで情報を整理・構造化する必要があります。これにより、本質的な問い、「イシュー」を決定し、解決することが可能となります。 表現方法はどう? 第三に、相手の立場に立って表現し、主語や述語を明確にすることが大切です。スライド作成時は、グラフの活用やメッセージの強調などを通して、何を伝えたいのかを分かりやすく示すことが求められます。 業務にどう活かす? この学びは、日常の業務、たとえば「関連部署への調達コスト説明報告」や「新規プロジェクト立ち上げ・運営」「部署内の売上報告」など、さまざまな場面で活用できます。なぜなら、これらはすべて課題解決や他者との協働を伴い、問いを特定し、構造化して解決することが本質だからです。また、他者に対する表現は、強調するポイントやメッセージを明確にすることが重要です。 調達報告は何故? 具体的な活用例として「関連部署への調達コスト説明報告」を挙げると、以下のようになります。 【考え方】 これまで、報告内容は漠然と定められていましたが、まず「なぜ報告するのか、相手は何を知りたいのか」を明確にすることから始めます。これにより、報告内容や方法、頻度、対象者を最適化できます。特に調達コストについては、各品目の状況に応じた本質的なポイント「イシュー」を特定し、説明に活かしたいと考えています。大きな金額や重要品目については、ピラミッドストラクチャーを作成・提示し、その考え方を共有することで、相手の納得度も高まると感じています。 伝え方はどうする? 【表現】 先方が知りたいことや、その後の情報の取り扱い方を明確にした上で、グラフの見せ方や強調ポイントを調整します。また、どの視点(相手目線、自部署目線、自分目線)で話をするのかに注意を払い、主語と述語を明確にしながら報告を進めます。

データ・アナリティクス入門

データ分析で見つける新たな視点

データ分析における比較の重要性とは? データを比較することは、他のデータと比較することでその意味合いを読み取ることにあります。繰り返しになりますが、「分析は比較なり」が重要です。単純な平均では見落としやすい情報を把握するために、データのビジュアル化を駆使し、バラつきを視覚的に理解することが求められます。比較を行い、グラフを解釈することで仮説を立て、その結果として次に分析すべきデータや分析の深掘りの方向性が明確になります。 代表値だけで十分か?アプローチを考える 大量のデータを比較するアプローチについて考える際、代表値の使用だけではデータの分布状況がわかりません。データの分布を考慮するために、標準偏差を併用します。標準偏差が大きければバラつきが大きく、小さければデータが集約していることを意味します。また、データをビジュアル化することも重要です。実際の業務では、加重平均とデータのビジュアル化が主に行われています。 代表的な数値には以下のものがあります: **代表値** 1. 単純平均 2. 加重平均 3. 幾加平均 4. 中央値 **散らばりを表す数値** - 標準偏差:標準偏差が大きいとデータがばらつき、小さいとデータが集約している。正規分布と2SDルールも考慮します。「起こりにくいことが起こっている」という実感値は5%です。 分析の深化にはどのプロセスが必要? 分析の内容に応じた代表値を使い、内容に応じたビジュアル化の方法を考えることが大切です。案件の特徴を「プロセス×視点×アプローチ」で分析することに重きを置くと良いでしょう。会社の施策展開にあたっても、目的に応じた比較を行い、ビジュアル化し、そこから仮説を立てて分析を深めていくサイクルを徹底していきます。過去の導入事例から仮説検証を行い、どの層にヒットしているかをビジュアル化し、現在進めているターゲティングの選定を進めていくことが求められます。 学びの共有はどのように行う? まず、メンバーにWEEK3の学びを共有し、現在取り組んでいる施策のターゲティングに役立てたいと考えています。根拠のあるデータを作成し、より良い意思決定に繋げることが目標です。代表値と標準偏差の仕組みを理解し、必要に応じて使い分けるために、日常の業務に取り入れてみることから始めましょう。

「分析」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right