データ・アナリティクス入門

仮説思考が導く新たな気づき

仮説の多角的検討は? 仮説を立てる際には、まず複数の視点から仮説を検討することが大切です。初めから一つに固執せず、さまざまな切り口で網羅性を意識しながら検討することで、より広い視野を持って分析できます。また、手元にあるデータはそのまま利用するのではなく、仮説を証明するために適切に加工し、都合の良いデータだけでなく反対のデータとも比較することで、説得力のある検証結果が得られると感じました。仮説思考を理解し、活用することは、効果的なデータ分析にとって不可欠です。 売上属人化は懸念される? 一方、現在進めているあるプロジェクトの売上についてですが、担当者の力量によってうまくいっている状態が続いており、それが属人化しているのではないかという疑いがあります。この点については、従来の分析フレームワークである4Pや3C分析を用いて、しっかりと仮説を立てた上で、営業のアクション提案にまで具体的に落とし込んでいければと考えています。

データ・アナリティクス入門

先入観ゼロで切り拓く未来

授業で得た発見は? ライブ授業での総合演習を通じて、これまでの座学での学びが実際のビジネスの現場でどのように活かされるかを具体的に理解することができました。データから全体のストーリーを組み立てる際、まず先入観を捨て、グラフ化などの具体的な作業に取り組むことで、新たな視点や発見があると実感しました。また、導かれた仮説に対する検証方法を事例を交えながら学ぶことで、手を動かすことの重要性を再認識しました。こうした日々の実践が、確かなスキル習得につながると感じています。 原価で何が変わる? 目標原価と実際原価の比較においては、まず全てのデータを要素ごとに分解し、どの項目で大きな差異が生じているかを把握します。その上で、差異が大きい項目について原因を仮説立てし、その仮説が正しい場合にどのような改善で原価が削減できるかを考えます。さらに、検証方法(=解決策)を具体的に提示することで、工場全体のコスト削減に貢献できると考えています。

データ・アナリティクス入門

全体をとらえるデータの物語

全体像と仮説の関係は? データ分析に取り組む際、単にあらゆる情報をむやみに収集するのではなく、全体のストーリーを大切にすることが印象に残りました。アウトプットのイメージを持ってデータ収集を行うと、目的に沿った情報が得やすく、分析の方向性も明確になります。また、仮説を立てる際には、フレームワークを活用することで多角的な視点から仮説を検討できますが、その検証に必要なデータは個々のアプローチによって異なるため、どの視点から何を分析するのか、目的を明確にすることが重要であると感じました。 データ収集のポイントは? 現場でデータを収集する方法として、アンケート調査やヒアリングが主な手法として挙げられます。アンケート項目を作成する際には、その趣旨を明確にし、複数の仮説と全体のストーリーに沿った質問を工夫することが求められます。こうした意識を持って、目的に合った質問項目を作成し、データ収集に臨むことが重要であると考えています。

データ・アナリティクス入門

数字で紡ぐ学びのストーリー

数字に基づく検証は? 分析は、ただの偶然や直感に頼るのではなく、数字の根拠をしっかりと確認した上でストーリーを構築することが大切です。まずは、何が言いたいのか、どこを重点的に見るべきかを整理し、その順序(What⇒Where⇒Why⇒How)に沿って傾向を明確にしていきます。 どんな原因が考えられる? また、考えられる原因を幅広く洗い出し、特に可能性が高い仮説についてはしっかりと検証する必要があります。平均値を見る際には、その数値のばらつきにも注意を払い、全体像を把握するよう努めます。 データの可視化はどう? さらに、データを視覚的に表現することは非常に効果的です。ヒストグラム、円グラフ、棒グラフなど、データの種類に応じて最適な図表を瞬時に選び出し、形にするスキルが求められます。数字だけのデータでは、何が言いたいのか、どこに課題があるのかを直感的に伝えることが難しいため、ビジュアル化が大きな武器となります。

データ・アナリティクス入門

現状把握で切り拓く自分の未来

考えの整理はどう? 総括すると、各工程ごとに自分の考えを丁寧に整理することの重要性を改めて感じました。「いつ」「どの業務が」「なぜ」「どのように」といった観点で整理し、その上で仮説を立て検証することで、具体的な解決策を導き出せると理解しています。 現状把握は何が鍵? まずは、現状を正確に把握することが不可欠です。具体的には、5W1Hの観点から現状を整理し、各工程を定量的に明示することが求められます。また、数字だけでなく現場へのヒアリングを通じ、データと実態に大きなズレがないかを確認していくことが重要です。 仮説検証はどう進む? 重ねて申し上げますが、現状把握を基に仮説を立て、検証するプロセスが鍵となります。仮説を検討する際には、現場担当者の感覚も反映させることで大きなズレが生じないよう確認し、データ整理は目的化せず、解決策検討のための具体的なアプローチとして行動に移す意識を大切にしたいと考えています。

データ・アナリティクス入門

データ分析で気づく改善の一歩

データ分析ってなぜ? 全体を通してデータを分析する重要性を改めて実感しました。今まであまり意識していなかったMECEの考え方―漏れや不足がない状態―について、比較の段階があることやそれぞれの段階で分かる情報の違い、そして明確な発見があるという点が印象に残りました。 着地見込みの工夫は? また、着地見込みを作成する際、単価を中央値で表示するなど細かい部分にも応用できる点を体験でき、シミュレーションに積極的に取り入れていきたいと感じました。今後は、シミュレーション結果や予算、実績とのGAP分析にもこれらの方法を活用し、より精度の高い検討を行いたいと思います。 GAP検証で何が起こる? さらに、シミュレーション実績との比較をもとにGAPの仮説検証を実施し、次の期には軌道修正が図れるよう動いていく予定です。まずは表やグラフを作成して比較し、そこから差異分析を行って仮説を立て、改善に結びつけていきたいと考えています。

アカウンティング入門

わかりやす会計が描く未来

説明はどう伝わる? 初回の講義冒頭で、「アカウンティングは人に分かりやすく説明されるものであり、決して難解で複雑なものではない」という話が非常に印象に残りました。世界中の企業で利用されている以上、誰にとっても明確で理解しやすいはずだと再認識でき、これまで漠然と感じていた取っつきにくさが和らいだように思います。 顧客情報をどう活かす? また、社内で新たなプロジェクトに参加する際、顧客の基本情報をリサーチするために今回の学びを活かしたいと考えています。顧客企業の基本情報や業界背景情報の収集に加え、財務データを正確に読み解いて自分なりの考察を持つことが重要だと思います。 財務分析は何が鍵? さらに、本コースの学びと平行して、クライアント企業の公開情報から直近の財務データを取り出し分析作業を進める予定です。さまざまな業界の企業データを比較し、業界ごとの違いや特徴を検証することで、より深い理解を得たいと思います。

データ・アナリティクス入門

仮説で切り拓く新たな発見の道

仮説は何のために? 仮説を立てることで、問題意識が芽生え、物事に対する検証マインドが育まれます。時間軸によって仮説の内容は変化しますが、頻繁に検討することで説得力が増し、スピードや行動の精度が向上します。そのため、仮説を立てた上で実際に行動していくことが重要です。 なぜ結果に違いが? 経理業務は過去のデータを整理する作業ですが、整理後の結果を見て、なぜこのような結果になったのかを考える際に仮説を活用できます。仮説を立てることで、結果が正しい理由があるのか、それとも処理に誤りがあったのかを、まずは検証することが可能です。 何が原因と判断? 具体的には、予算との比較や前年度との比較を行うことで、突出した変化を確認します。もし大きな変化が見られない場合は問題がなかったと判断できますが、何かしらの極端な変動があった場合には、その原因を仮説に基づいて検証することで、より正確な分析が行えるようになります。

クリティカルシンキング入門

データ分析が変わる!MECEの魅力発見

データ分析は何が肝心? データを分析する際、「分解」する視点や切り口によって得られる情報が大きく異なることに気づきました。表面的な情報で安易に判断せず、多角的な視点からデータを分析し、十分に検証することの重要性を認識することができました。 要因の背景はどう検証? たとえば、離職率の原因を調査する際には、年齢や勤続年数、部署、職位などの要素をMECEに分けて分析することで、特定の要因や傾向を見つけやすくなります。さらに、背景や理由を深く掘り下げることで、適切な予防策を講じることが可能になると考えています。 分解で見えているものは? まずは、自分自身でデータを加工・分解することで、データ分析に慣れていきたいと思います。データを扱う際にはMECEを意識し、さまざまな視点から分析を行うことを心がけます。また、そこから導き出した仮説については、他の視点からも確からしいかを検証する姿勢を持ちたいと考えています。

クリティカルシンキング入門

問いと実践が導く解決の道

自ら問いはどう始める? 適切な課題を捉えるには、まず自ら「問い」を立てることが大切だと実感しました。ケーススタディを通じて、数字やデータを分解する手法を学び、分解することで問題点が明確になり、解決策を具体的に構築できることを実感しました。 チームの伝え方はどうする? また、チームの課題を正確に把握するためには、理想とのギャップ、すなわち「問題」を捉え、その内容を的確に相手に伝えることが重要だと感じています。これによって、課題解決へとつながるトレーニングを外部から受けるための土台が築かれると思います。 データ分解で何が見える? さらに、得たデータを細かく分解し、いろいろと試してみることで、新たな「イシュー」を特定できる可能性があると考えています。以前学んだ内容も踏まえ、遠回りでも実際に手を動かして検証することが重要です。具体と抽象を繰り返すことで、より深い理解と着実な進歩を遂げられると感じています。

データ・アナリティクス入門

実践で磨く仮説力の秘密

実務分析の感想は? 今回の演習では、多くのデータや豊富な情報を基に、実務に即した分析を体験できました。仮説を立てる重要性を実感し、検証の目的を明確にすることの大切さを再確認しました。一方で、考えやすい仮説もあれば、内容によっては仮説の設定に苦慮する面もありました。今後は経験を積み、自然に仮説を立てられるようになることを目指したいと思います。 比較で何が見える? また、最初の講義で学んだ「分析は比較である」という考え方を再認識しました。検証項目をしっかりと揃えることが、正確な判断に繋がると感じました。自分の業務では自らデータを取得する機会が少ないため、実際に活かせるシーンは限られるかもしれませんが、常に比較項目を揃える意識を持って仕事に取り組みたいと考えています。今回の内容は情報量が多く、フレームワークの理解が十分とは言えなかったため、書籍の読解や講義の再視聴などで定着を図り、理解を深めたいと思います。

クリティカルシンキング入門

視点を変える分析で得た新たな発見

最適な分解の方法は? 分解の切り口によって異なる視点が得られることを実感しました。MECEには主に3つの種類があり、無駄と重複を避けるためにはいきなり細かく分けずに進めることが有効であると学びました。階層別、変数分解、プロセス分解を試し、それぞれの分析の対象に合わせた適切な方法を選ぶことが重要です。 医薬品の使われ方は? 自社が取り扱う医薬品の使用傾向を把握する際にも応用できると感じました。患者層の理解に加えて、別の薬剤を選択する医師の傾向も調査すると、効果的な対策が立てやすくなるのではないかと思います。 データ検証はどうする? また、毎週の社内ミーティングでは、それまで試したことのない切り口でデータを分析してみます。これまでのデータも同じ切り口で分析可能かを検討し、社内メンバーと重複なく実行できているか確認します。得られた結果から仮説を立て、それに基づいた活動を行い、次週に検証していきます。
AIコーチング導線バナー

「データ × 検証」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right