データ・アナリティクス入門

発見!数字が紡ぐ成長物語

現状と目標はどう? データ分析の基本は、まず現状を正確に把握し、理想の状態を明確にすることにあります。現状を理解した上で目標を設定することで、実現可能な改善策の検討が可能となり、より効果的な意思決定につながります。 比較で見えるものは? また、分析作業においては、異なる時期やグループ間での比較が鍵となります。比較を行うことで、問題点や改善策が明確になり、データから得られる示唆が深まると感じました。 切り口の変化に気づく? さらに、データの分解や分類、そして視点の切り替えを適切に行うことが分析の精度向上に直結します。目的に合わせた切り口でデータを見ることで、従来は見落としがちな傾向や改善点が浮かび上がり、最終的に意思決定を行う上で必要な情報が明確になります。 グラフで何が分かる? 実務での分析において、ヒストグラムや散布図を取り入れる試みを行いました。これまで平均値や中央値といった基本的な数値だけで評価をしていたため、賃貸物件の募集データにおけるばらつきや分布の傾向を見逃していました。しかし、ヒストグラムや散布図を作成することで、特定の物件の賃料が極端に高いまたは低いケースが存在していることに気づくことができ、単純な平均値だけでは把握できなかった重要な情報を得ることができました。 次は何に注目する? 今後は、データ収集時に注目すべきポイントや重要な変数を明確にし、分析の目的に合ったデータを選定することを徹底します。また、定期的にヒストグラムや散布図を作成してデータのばらつきや傾向を常時確認し、分析結果を関係者に報告してフィードバックを受けることで、さらなる改善を進めていくつもりです。

データ・アナリティクス入門

データ分析で経営に革命を起こす方法

標準偏差をどう理解したか? データを分析する際に使用する数値(平均値、中央値、標準偏差)について、特に標準偏差については名前を聞いたことがあってもよく理解していなかったが、今回の学習でよく理解できた。2SDルールを使うと、大体の平均値が分かることも印象的だった。また幾何平均についても学べてよかった。恥ずかしながら、これまで売上の成長率をデータを目で見た大体の数で算出していたため、売上予測を立てるのに幾何平均が大いに役立つと実感した。調べたところ、エクセルでは標準偏差はSTDEV.P関数、幾何平均はGEOMEAN関数を使うと算出できるようだ。 より的確な売上予測を立てるには? まず、目標設定のために売上予測を立てること。また、各製品のポテンシャル予測にも活用できそうだ。さらに、自社サイト会員数の分布を散布図を使って確認することができると思った。ニッチな業界のためこれまで分布を確認したことがなかったが、年齢や勤務地等でデータを分析してみると面白そうだ。 各製品の成長率を比較する方法は? 次に、扱う製品と市場の性質上、月毎の売上に大きなばらつきがあるため、年ごとにまとめるのでは効果的な数字が得られないと考える。そのため、各製品の月毎の売上を、過去の3-4年と比較することで成長率や今後の伸び率が確認できそうだ。また、例えば月1以上ログインしている会員の年齢を5年くらいごとに区切ってヒストグラムに示す、あるいは企画ごとに図式化することで、どの企画がどの年代に刺さっているのかが分かりそうだ。 有用なデータ分析を期待するには? これらの手法を取り入れることで、より具体的で有用なデータ分析ができると期待している。

データ・アナリティクス入門

業務の混乱をデータ分析で解消する挑戦

データ分析は日常にも必要? データ分析は、ビジネスだけでなく家電製品の購入など日常生活でも無意識に行われており、身近な行動の一部です。ビジネスの場では、定量分析が非常に有用です。一方、日常生活では感覚や好みなど定量化できない要素も分析項目になり得ます。 データ分析の目的とは? 重要なのは、データ分析は目的ではなく、目的達成のための手段であるという点です。ただ数値を比較したり並べたりするだけではなく、データに解釈を加えることで初めて目的に沿った活用が可能になります。したがって、他の業務と同様に、データ分析の際にも目的を考えることが大切です。また、分析したデータを使用する相手と目的を確認することも重要です。 職場のデータ環境は? 現在の職場では、データ分析を行いながら業務を進める人がほとんどいません。業務の担当も定まっておらず、情報を共有する環境も整っていないため、分析に必要なデータが揃っていないと感じています。入社して半年経ちますが、過去のデータ(案件、契約金額、契約終了後の顧客評価など)や取扱製品の情報が一覧になっておらず、それぞれの資料を見るか人の記憶に頼るしか方法がないことに難しさを感じています。 必要なデータの収集方法は? まずは、分析に必要なデータを集めて整理することが必要です。その後、競合との差別化や取引業者の選定など、目的を設定した上で必要なデータ分析を行います。具体的には、人の記憶に頼っている情報を可視化し、自分が入社してから苦労してきた過去のデータや取扱製品の情報を整理します。その上で、現在の会社の課題を意識し、その課題解決のために必要な分析を進めていきたいと考えています。

クリティカルシンキング入門

イシュー明確化で見えた改善への道

イシューの本質は? イシューを明確にすることの重要性について学びました。まず、思いついた解決策を実行する前に、課題の核心を押さえるイシューを明確にすることが必要です。誤ったイシューの捉え方は、課題解決の方向性を大きく逸脱させる可能性があります。適切なイシューの見つけ方として、次のプロセスを実行することが推奨されます。 目的と現状は? まずは、何を達成したいのかという目的をはっきりさせることです。また、関連するデータや情報を集めて現状を把握し、関与する人のニーズや期待を理解することが重要です。さらに、現状を多角的に分析し、具体的な問題を明らかにすることが求められます。 戦略のギャップは? 次年度の戦略立案や施策検討では、目標と現状のギャップを認識し、その原因を探るために十分な情報収集を行います。これまでの施策を見直し、改善点を見極め、メンバーと共通のイシューを持ちながら検討を進めることが重要です。 セミナー効果は? また、プロモーションを目的としたWEBセミナーを開催し、その効果を検証します。具体的には、申込人数や参加動機、顧客属性の分析を通じて、セミナーの目的と結果が一致しているかを確認します。さらに、事後営業の戦略を考え、効果を数値で評価します。 問いの共有は? 業務においては、問いから始め、問いを残し、問を共有するというアプローチも重要です。特にプロジェクト進行中においては、最初に設定した問いから外れることを防ぎ、メンバーと目線を合わせる工夫が求められます。そのために、年度初めに評価指標を設定し、過程を記録して振り返り可能な状態を構築することを考えています。

クリティカルシンキング入門

グラフで伝える!データ活用の新発見

グラフの特徴は? グラフに関して、以前は感覚的に理解していたつもりでしたが、今回の学びを通じてその理解がより明確になりました。例えば、帯グラフと円グラフの違いを再確認しました。円グラフは数値の大きさを強調する一方で、帯グラフは要素間の比較がしやすいという特徴があります。また、棒グラフと折れ線グラフについても理解を深めました。棒グラフは推移を強調し、折れ線グラフは変化や傾向を捉えやすくする役割があります。 分析手法は何? スライド作成における学びとして、データの解釈を示す際には基礎データを加工し、図表を用いて分析結果を表現するプロセスが重要です。しかし、その前にキーメッセージを仮説として立て、それに基づいたひと手間を加えることが大切であると理解しました。特にサンプル数が多い場合、このプロセスは複雑になることがあります。 業務にどう応用? この学びを業務にどう活かすかについても考えました。リサーチ業務では、統計データや一般公開データからリサーチペーパーを作成する際に、適切な分析視覚を導き、適切な図やグラフを選択するスキルを磨きたいと思います。企画立案業務やプロジェクトの計画・遂行においては、質的情報を効率よく示すための工夫が求められます。特に分かりづらい内容を文章で表現する際には、フォントの選択や文章の配置、配色などを意識して、効果的に伝えるよう心掛けたいと考えています。 資料提案の工夫は? 業務においては、現在取り組んでいるプロジェクトの提案資料作成において、学んだことを応用する予定です。スライドを用いる際には、「メッセージ」や「見せ方」に注意し、情報を盛り込みすぎないよう意識します。

クリティカルシンキング入門

切り口が変える数字の物語

数字の意味は何か? 数字が持つ意味をより深く理解するためには、まず情報を分解して、その解像度を上げることが重要です。一つの視点だけでなく、複数の切り口から現象を分析することで、より正確な現状把握に繋がります。 結論前の検証は? 具体的には、一つの傾向に満足するのではなく、さらに他の可能性を探る意識を持つことや、得られた分析結果からすぐに結論を出すのではなく「本当にそうなのか」を丁寧に検証する姿勢が求められます。また、頭で考えるだけでなく実際に手を動かし、様々な視点からデータを見直すプロセスも大切です。 MECE活用で分析は? さらに、分析を行う際にはMECEの考え方を取り入れることが有効です。具体的には、階層、変数、プロセスという視点から、物事を漏れなく、重複なく整理していく手法が挙げられます。たとえば、プログラムの参加者数の伸びを検討する場合、年齢だけでなく居住エリアや参加プログラムの種別といった観点から属性を分析することで、より多角的な理解が可能になります。 課題整理はどう進む? また、自身の業務上の課題を明確化するためにも、評価の視点が抜けや重複なく組み込まれるよう、MECEを活用して細分化し、その対応力を数値化する手法は効果的です。担当している事業プログラムの認知度についても、過去数年間のデータを大学別、学部別、学年別、応募種別などの切り口で集計し、グラフ化することで、現状と改善点を明確にできます。もし、最初の分析で十分な結論が得られなかった場合には、別の切り口から再度分析を行い、想定される課題について漏れや重複がないよう整理することが大切です。

データ・アナリティクス入門

数字と論理で未来を切り拓く戦略

何が問題なの? 直面している課題や状況を整理する際、まずは「何が問題なのか」「どこに課題があるのか」「その原因は何か」をはっきりさせ、さらに原因に応じた有効な解決策を検討するプロセスの重要性を改めて実感しました。複数の切り口から状況を把握し、定性的な評価も加味しながら優先順位をつける方法は、日々の業務や計画作成にとても役立っています。 現状のギャップは? また、「あるべき姿」と「現状」とのギャップを定量的なデータで示すことで、問題の本質が明確になる点も印象的でした。具体的な数値やトレンド、ばらつきまで丁寧に分析することで、正しい状態へ戻すための対策が見えてくると感じました。こうした定量分析の視点は、実際の現場での判断材料として非常に有用です。 サンクコストは? さらに、サンクコストの考え方にも気づかされました。すでに支出してしまったコストに固執せず、未来のために合理的な判断を下すことが大切であるという点は、今後の意思決定に活かしていきたいと思います。 MECEの意味は? 最後に、MECE(もれなくダブりなく)を意識してロジックツリーを用いながら事象を整理する方法も、新たな視点として非常に学びになりました。事象を年齢や季節、販売数などさまざまな要素に分解し、全体像を捉える努力は、複雑な問題に対処する上で大いに役立つと感じています。 学びはどう活く? 以上の学びを踏まえ、①定量的データに基づく現状把握、②優先度や重要度を考慮した計画立案、③場面ごとのMECEの適用というプロセスを、今後の日々の業務に活かしていきたいと考えています。

データ・アナリティクス入門

数字で見える学びの未来

どうして視覚化すべき? 数字に集約することと、目で見て理解することの大切さを再確認しました。纏めたデータをグラフ化するなど視覚化することで、ヒストグラムなどを活用しながらデータのばらつきを直感的に把握できる点が印象的でした。 比較で何が見える? また、データ分析は「比較」に基づく作業であり、仮説思考が重要だと感じました。分析のプロセスでは、仮説を立て、異なる視点とアプローチを用いることによって、より本質に迫ることができると理解しています。 代表値はどう使う? 代表値の使い分けと散らばり(標準偏差)を組み合わせる方法も興味深かったです。平均値や中央値、加重平均、幾何平均など、用途に応じた手法があるため、Excelで計算できることから複雑な計算式を覚える必要はなく、実務で活用しやすい点が良いと感じました。 成約率との関係は? さらに、営業活動のように暴露機会と成約率、またユーザーの購買意欲と成約数との因果関係を数値化する場合、代表値だけでなく標準偏差による散らばりを検討することで、ユーザーの傾向をより正確に導き出すことができると考えています。まずは仮説思考から取り組む姿勢が大切だと再認識しました。 グラフの魅力は? 最後に、提供される表形式のデータを様々なグラフで可視化し、検証のヒントを得る点も魅力的です。従来の平均値や中央値に加えて、標準偏差などの散らばりを取り入れることで、ユーザーの購買情報をより明確に把握できる可能性が広がっています。定性情報をいかに数値化してデータ分析に活用するか、その工夫が今後の課題であり、挑戦してみたいと感じました。

戦略思考入門

リソースを活用した効果的な学びの秘訣

リソースの投入はどう? リソースは限られているため、最も効果的な場所にリソースを投入する必要があります。そのためには、優先順位を明確にし、判断基準をしっかり持つことが重要です。事例で学んだROI(投資した資本に対して得られる利益の割合)は非常に参考になりました。また、手元に判断材料がない場合には、仮説思考を活用して検討を進めることも有効です。異なるパターンを考慮し、ポジティブ、ネガティブの両面から設定を検討するのもよい方法です。複数の視点を持って考えることは、ビジネスの複雑な状況において必要不可欠です。 ROI評価、改善は? 判断過程でROIが低い業務は、思い切って見直すべきです。戦略においてはメリハリをつけて判断し、数値に基づいて決断することが求められます。 業務の見直しは? 自身の業務を見直す際、費用対効果を考えてみます。時給9千円に見合っているかどうかも考慮します。 業務改善の具体策は? - **帳票管理** 帳票の整合性確認に時間がかかっているため、これを自動化することを検討します。 - **報告資料** 報告内容が多く、時間がかかるため、上司が使わないであろう報告内容は簡略化します。 - **新規顧客獲得活動** マッチングプラットフォームを用いた活動で受注率が低いため、自組織の強みを活かした案件にシフトし、紹介活動に力を入れます。 - **活動行動ログ** より良い目標に向かうために活動の目標を明確にし、それに基づくデータを再確認します。正しい分析を行うために、ゴミデータの除去も意識します。

クリティカルシンキング入門

実践から見えてくる本当の課題

どんな問いで課題に迫る? 適切な問いを立て、課題を捉えることの大切さを改めて学びました。ファストフード店のワークでは、要素を分解し、特定した課題に対して打ち手を考えるプロセスを体験できたことで、理論と実践のつながりを実感しました。 振り返りのポイントは? また、観光課の課題に取り組む中で、スライドの作り方の振り返りを通じて、実際に打ち手を導き出すプロセスをたどる経験ができたことも大きな収穫でした。 データで本質を探る? マッチングアプリの企画を検討する際には、定量データからイシューを見出す必要性を強く感じました。業務を進める上で課題となっていた部分が、一連のプロセスを体験することで明確になり、今後は学んだ一つ一つのステップを実務で活かしていきたいと考えています。特に、データを見るとメッセージや問いの本質が薄れ、グラフ作りに偏る傾向があるため、何を伝えたいのかが十分に伝わらなくなることを痛感しました。そこで、学びの各ステップを意識しながら行動する必要性を改めて認識しています。 目的と課題の整理は? 目的を明確にした上で前提を整理し、その前提に立って課題を整理することが、事実を数値から捉え直し、関係者全体の意識を合わせる準備になると感じました。伝えたいメッセージは、事実をしっかりと伝えることから始まるため、単にグラフを作成するのではなく、構造分解して課題を定量的に評価するプロセスを重視したいと思います。KPIツリーの活用により、数値をもとに比率や増加率を取り入れながら、課題の発見につなげる手法の大切さを実感しています。

デザイン思考入門

挑む受講生が描く学びの軌跡

どの手法が有効? 私の業務では、主に三つの手法を活用しています。まずA/Bテストでは、メール告知に取り入れる際に、カラーや情報の提示順序などの要素を変更しながら検証を行います。数値化可能なクリック率やコンバージョンの結果をもとに、効果を測定しています。 参加型はどう活かす? 次に、参加型デザインです。アンケートの回答からユーザー視点での改善点を抽出し、定期的に開催するセッションでは、複数のロイヤルユーザーの意見を自由に出してもらいながら改善策を模索しています。 インタビューで何を引き出す? さらに、インタビューも実施しています。購入の動機や使い方を詳しく聞き取り、限られた時間の中でユーザーの意見を引き出すためには、ファシリテーション技術が重要であると感じています。なお、インタビューでは、自分の仮説検証において予想と異なる結果になることも多々あり、大きな声を持つ一部の意見に左右されず、冷静な判断が求められると実感しています。また、求めるデータの種類に合わせて、最適な情報収集手法を選択することも大切です。 デザイン思考はどう磨く? デザイン思考については、明確なゴールが設定されているわけではなく、その時々で最高のものを作るために100%の力を注いでいる状況です。しかし、知れば知るほど「より良いものを」という気持ちが高まり、常にアップデートを重ねていくOSのようなものだと感じています。かつて先輩から「我々が作るものは常にβ版である」との言葉をいただいたことが、決して満足せず成長し続ける意欲に繋がっていると改めて考えるきっかけとなりました。

クリティカルシンキング入門

データ分解で見える新視点の魅力

数字分析の本質は? 数字を分析するとき、一つの要素だけでなく、複数の要素を組み合わせて分解することで、新たな視点が得られることがわかりました。分解することで初めて見えるものがあり、実際にデータを操作してみることの重要性を感じました。エクセルで表をダウンロードし、関数や条件付き書式を使って分析することで、数字に隠れた情報も明らかになりました。また、どの要素をどのように分解すればどんな結果が出るのかを予測しながら作業することが、分析の精度向上に繋がると実感しました。 工数分析の効果は? 具体的には、コールセンターの効率化にこの分析手法を活用したいと思います。応答時間、後処理時間、入電内容、お客様の待ち時間などの観点から、それぞれの業務にかかる工数を数値化できます。これにより、どの業務に多くの工数を費やしているのかを可視化し、効率化の余地がある業務を特定することが可能です。 多角度分析のヒントは? さらに、コールセンターでは顧客から情報を得るだけでなく、それを様々な角度で分析して新たな顧客獲得のヒントを見つけることができると感じました。こうした情報は営業やマーケティング部門でも必要とされるでしょう。どんな情報が役立つかを部署間で話し合い、共有することが重要です。 新たな要素を探す? 今後、毎月集計しているお問い合わせ内容や顧客情報を新しい要素で分析してみたいと考えています。これまではカスタマーセンターの視点で集計を行っていましたが、マーケティング部門の視点でどのように数字を分解できるかを検討し、目的に応じた分析を進めていきたいと思います。

「数値 × データ」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right