クリティカルシンキング入門

グラフ活用で説得力向上!

グラフはどう選ぶ? 見る人に伝えたい内容に応じて、適切なグラフを採用することが重要であると感じました。それぞれのグラフの利点を把握し、状況に応じた選択ができるようになりたいと思います。また、よく使用されるパターンを覚えておくことで、業務で迅速に判断できるようにしたいです。 文章の伝え方は? 文章での伝達については、文章自体の内容に加えて、色や書体、図などの表現方法が伝わり方に影響を与えることを学びました。伝えたい内容に適した表現方法を選ぶことが重要です。実際に読んで、それぞれが伝えたいメッセージに合致しているかどうかも確認を続けていきたいです。 スライド制作の秘訣は? スライド作成時には、「文字や図表、グラフの配置」「メッセージの内容」「図表やグラフの表現方法」に関する工夫が大切です。これらのポイントについても学びました。 上司への伝達はどうする? 日々の業務における上司とのミーティングでは、数値やグラフを使って整理しながら伝えることで、内容がわかりやすくなり、コミュニケーションがよりスムーズに行えると感じました。 販売戦略はどう進む? 現在の部門の販売方法については、POSデータを活用しながら整理した話し合いを進めています。「何をいつ、どれだけ販売すべきか、そのための行動はどうするべきか」について部門全体で認識を合わせ、行動に繋げていくことを目指しています。

データ・アナリティクス入門

平均値だけじゃない!全体を読む力

全体像はどう理解? データ分析において、従来は個々の指標の数値に注目していましたが、全体像を俯瞰する視点の重要性に気付かされました。ミクロな比較だけでなく、マクロな観点からデータ全体の分布に目を向けることで、より精度の高い理解が得られると感じています。 分布の意義はどう? 単に平均値だけに頼るのではなく、各指標のばらつきや分布の状況を把握することが、好調な要因や低調な要因を見極める上で大いに役立ちます。利用者の属性ごとにどのような傾向があるのかを明確に掴むためには、データ全体を広い視野で捉える必要があると実感しました。 層ごとの違いは何? たとえば、ある教育機関の利用者分析では、一部の層でばらつきが大きく見られる一方、他の層では比較的安定した数値が示されていました。こうした違いは、全体のデータを俯瞰することで初めて正しく理解できると考えます。 ツール選びはどうする? 私自身は、常に分布と俯瞰的な視点を忘れないよう、日々の学習の中で意識しています。平均値だけでなく、各種指標の分布を把握するためのツール構築にも取り組み、より具体的かつ実践的な分析に努めています。 仲間とどう共有する? また、周囲の仲間にも、平均値一辺倒にならず、データ全体の傾向を把握する大切さを伝えるよう心がけています。この学びを通じ、より深い洞察と分析力の向上を目指していきたいと考えています。

データ・アナリティクス入門

データ分析の本質を再発見!

分析と整理の違いは何か? 「分析」、「収集」、「整理」はそれぞれ異なる作業です。データ整理で分析が終わることもしばしばあり、比較対象があいまいになることもあります。また、見せ方に時間をかけすぎると、「相手に伝えたい」という本来の目的が不明瞭になることが多々あります。これは、「分析とは比較である」ことや「目的に立ち返ること」がしばしば抜け落ちがちだからではないでしょうか。楽な方に流れる思考や、目に見える分かりやすいものに飛びつきやすいバイアスに引っ張られる癖があります。自分の特徴を含めてこれらをしっかり俯瞰して整理しておかないと、学びの方向性やその捉え方がずれてしまう可能性もあると感じました。 常に数値を更新する重要性 販売状況や市況状況、社内状況の分析を進める中で、過去の基準や初期値がたびたび変更されてきました。分析が比較である以上、常に更新された数値のみが注目されることが多いです。このような状況では正確な分析ができず、意思決定に繋がらないと感じています。これはとても危険なことかもしれません。 データ整理はなぜ重要か? 様々な分野で目的とされることを視野に入れ、使用されるデータの洗い出しを行います。比較するためにも整理が必要ですので、いつでもデータを抽出できるよう、整理を行うことが重要です。整理された状態から、それぞれの目的に合わせた比較基準を設計することが求められます。

データ・アナリティクス入門

ギャップに挑む学びの一歩

問題の本質をどう捉える? 問題解決プロセスについて学んだ内容は、まず「ありたい姿」と現状を比較し、そこに存在するギャップに着目する点から始まります。その上で、問題を構成する要素に分解し、ロジックツリーを用いながら要素間の関係を整理していく方法を学びました。ここでは、MECEの原則を意識しながら、WHAT、WHERE、WHY、HOWといった各視点で問題を詳細に捉えていくプロセスが重要です。特に、どこに問題が潜んでいるか(WHERE)の特定が解決への大きな手がかりとなります。 広告関連の要因は? たとえば、広告効果を測るデータで前回のCPと比較し、数値に大きな乖離が見られる場合、このプロセスは有効に働きます。その際には、広告以外の宣伝活動があったか、テレビで取り上げられたか、他社が類似のCMを始めたか、または在庫の問題がなかったかなど、さまざまな要因を洗い出して、どうすれば問題が解決できるかを検討することが求められます。 部門へ依頼する理由は? 現状では、業務スコープの中でデータが正しく取り込まれ、出力される段階で分析が終了してしまっていることが多く、結果としてその分析作業は別の部門に依頼しているケースが見受けられます。今後は、アナリストとしての視点を強化し、データを直接営業チームに提供できるよう、問題解決プロセス全体に対する理解と取り組みをさらに深めていきたいと感じました。

クリティカルシンキング入門

視覚化とAI活用で資料作り革命!

視覚化は本当に必要? 視覚化の重要性を再認識し、「なんとなく」で資料を作らないこと、伝えたいことが明確なスライドを作ることの大切さを学び直す機会となりました。私は普段の業務でMicrosoft Copilot等の生成AIを使って資料や議事録の要約を行っていますが、生成AIはあくまでツールに過ぎません。何を伝えたいかを常に自分自身で考え続けることが相手の理解を助けると強く感じています。 資料作成はどうすべき? 経営企画の一環として、経営会議での財務報告を担当しており、一目見ただけで理解できる資料作成を心掛けています。また、多くの場面で議事録作成をしていますが、AIサービスをトライアルする機会を得ました。これは補助的には優れたツールですが、議事録を作成する際には何を記録すべきか、参加者が何を確認したいかをしっかり意識する必要があります。このため、全てをAIに任せることはできないと感じました。 学びは何を示す? 今回の学びを通じて、何を伝えるべきかを人が考える意義を再認識しました。幸いにも、今回の学習内容は業務で即活用できるものであり、資料作成時には常に意識していきたいと考えています。また、全社的な財務数値管理を一歩進め、部門メンバーが状況や課題を理解できる資料作りにも力を入れたいと思います。そのためには、データ収集の自動化を進め、効率化を図っていくことも考えています。

クリティカルシンキング入門

正しい問いで切り拓く明日

本質的な問いは? 「イシューの特定」、すなわち「今、何を考えるべきか?」を問うことが、クリティカルシンキングにおいて最も重要であると学びました。問いの立て方が誤っていれば、これまで習得してきたデータの分解や視覚化などの手法も効果を発揮しません。そのため、常に正確な問いを立て、本質的な課題を見失わないよう意識することが大切だと感じています。 背景をどう見る? 管理職として日々様々な課題に直面する中で、表面的な事象だけを捉えて短絡的な対策を講じるのではなく、その背景や状況をしっかりと把握し、正しい問いを立てることを心掛けています。また、メンバーからの質問や相談に対して、イシューが正しく特定されていないと感じた場合は、しっかりと話を聞きながら、彼ら自身が本質的な問いを見出せるようサポートすることを意識しています。 計画に必要なものは? 来年度の事業計画作成にあたっては、まず今年度の振り返りで、良かった点と改善が必要な点を背景やデータの視点から深く掘り下げること、その上で「数値目標(売上や利益)を達成するために何が必要か?」という問いを軸に、今年度の学びを活かしながら来年度の取り組みを策定していきたいと考えています。また、事業計画をメンバーに共有する際には、表面的な数字だけでなく、計画の背景にある課題やそれに基づく理由を十分に伝わるよう工夫して説明していくつもりです。

データ・アナリティクス入門

平均だけじゃ語れないデータの秘密

データ分析の秘訣は? 今週は、数字に集約してデータを比較・分析する手法を学びました。単純な平均値だけでなく、データの中心を示す代表値や、どのようにばらついているかを示す散らばりの視点からも計算・分析することで、データの偏りや傾向を正確に捉えることができると理解しました。一方で、単純平均だけに頼ると誤った分析結果に至る可能性があるという点も印象的でした。特に、実践演習での受講者の平均年齢の設問において、単純平均では実際のデータの分布と乖離があることが実感できました。 最適計算方法は? また、代表値や散らばりには複数の計算方法が存在することも学びました。状況に応じて最適な計算方法を選択し、仮説の検証に役立てていきたいと考えています。 人流データはどう見る? 例えば、人流データの年度別や地域別での比較において、従来は増加率を用いることが多かったため、得られる情報が限られていると感じていました。今回学んだアプローチを踏まえ、具体的な仮説のもと、どの計算方法が最も有効かを検証していくつもりです。 グラフの意図を探す? 自分の業務では、可視化されたグラフから示唆を得る場面が多いですが、まずはそのグラフがどのようなデータ項目から構成されているのかを数値で確認し、どのような意図で作成されたのかを図表とともに理解することを意識して取り組んでいきたいと思います。

クリティカルシンキング入門

伝わる資料は細部に宿る想い

グラフの意味は何? グラフが持つ一般的な意味について再認識する機会となりました。例えば、縦棒グラフは要素間の比較に、折れ線グラフは変化や経緯を表現する際に効果的です。資料作成においては、グラフの種類だけでなく、配色、配置、フォントなど細部にも意図を込めることができると実感しました。こうした「隅々まで趣向を凝らす」姿勢を持つことで、手間をかける理由―伝えたいという強い思い―が資料に温かみを与え、結果として細かな注意点も自然とクリアできると考えています。 人事資料は分かりやすい? 人事部では、全社向けに発信される資料が多数あるため、誰が読んでも理解しやすく、視覚的に読み込みやすい資料作成の重要性を感じています。特に、人事考課や昇格試験の案内では、体裁の整え方に重きを置き、ナンバリングなどを活用してより簡潔に情報を伝えられるよう工夫していきたいと思います。また、人事から発信する読み物においては、アイキャッチの工夫により従業員のメリットや関心に沿ったデザインを心掛け、興味を引く資料作成を目指します。 数値資料で納得? データを用いた資料作成においては、相手に情報の探索をさせないため、定量的なグラフを活用し、配色やフォントにも意図をもって整えることが重要です。さらに、メッセージとデータの整合性を常に意識しながら、分かりやすく簡潔な資料作りを進めていきます。

クリティカルシンキング入門

視野を広げるための問いかけの力

分析時に問いかけの重要性とは? 分析の目的を「問いかけ」から始めることの重要性を学びました。具体的なテーマを最初に決めてしまうと視野を狭めてしまう可能性があります。そのため、「何のために?」と問いかけることからスタートし、具体化することが大切です。また、チームで物事を進める際には、ゴール(目的)を明確にしておくことで、本質から脱線することを防ぐ効果があると理解しました。この認識を忘れないように、何度も共有することを徹底したいと思います。 新規企画にどう役立てる? 新しいサイトやサービスの企画や改善の際にも、この方法が役立つと感じました。たとえば、上司から「このシステムを導入するために資料を作って会議をセットしておいて」と指示を受けることがあります。その際、イシューを明確にしておくことが効果的だと思いました。 効率的なミーティングの準備法は? これまで私は、新しいサイトやサービスを企画する際、「●●について」とテーマを限定してキックオフの資料を準備していました。今後は、事前に情報を分解し、目的を問いかけることでテーマを具体化した状態で会議に望もうと思いました。責任者からスピーディーな改善を求められることが多い中、これにより時間の節約にも期待が持てます。また、データ分析を用いて現状の数値をしっかり把握することで、改善後の効果測定も行いやすくなると感じました。

クリティカルシンキング入門

数字の魔法:分解から見える新世界

数字をどう分解する? 数字を分解することで、新たに見えてくるものがある。しかし、どのようにその数字を分解するかによって、見える内容が大きく変わるため、その切り口が重要である。分解のパターンはすぐに思い浮かぶものではないので、日々数字に慣れ親しむことが必要だと感じた。さらに、加工や分け方を考える際には、ある結果が出るだろうといったバイアスを自覚し、数字を見る姿勢を持つことが大切だと考える。また、数値やグラフの見せ方に注意を払い、一旦落ち着いて数字を疑う必要がある。一方で、受け取る側はそのままを信じてしまいがちである。 データはどう精査する? プロジェクトの進捗や品質を分析する際には、単に多い・少ないだけでなく、時間経過での変化といったデータを見る観点も必要であり、これにより状況を正確に把握できるようになる。収集するデータは多いに越したことはないが、多すぎると、メンバーへの負荷やコストが増加するため、取得するデータは十分に精査されるべきである。 問題をどう整理する? プロジェクトにおける問題や課題を整理し、定量的に測れるものをデータ収集の対象とすることが求められる。そして、上司などに説明して自分以外の視点からの意見を取り入れ、多角的に物事を捉えてブラッシュアップしていくことが重要だ。日常生活でもニュースなどの数字に興味を持つ習慣をつけることが大切である。

データ・アナリティクス入門

学びの軌跡が未来を照らす

仮説の切り口はどう? 原因の仮説を洗い出す際は、フレームワークなどを活用しながら大きく2つに分け、対概念の視点を取り入れて考えることが有用です。その後、問題の原因を明確にするために、ステップを踏んでデータを分析することで精度を高められます。 解決策はどう選ぶ? また、解決策を立案する際には、複数の選択肢をまず洗い出し、しっかりとした判断基準と重み付けを設定した上で、定量的な根拠により絞り込むことが重要です。 アンケートの見方は? アンケートの分析においては、満足度や推奨度などの数値から問題点を見つけ出し、フレームワークを用いてMECE(漏れなく・ダブりなく)を意識しながら原因を掘り下げることが考えられます。対応策を検討する際には、現状設定している軸に加え、コスト、スピード、対象範囲、実現可能性などの評価項目に対して重み付けを行いながら施策を選択していくことが求められると感じました。 分析の盲点はどこ? これまでのアンケート分析では、満足度、推奨度、理解度などを全体の平均値で評価する手法が主流でした。しかし、全体の数値は悪くなくとも狙い通りの結果が得られなかった場合や、自由記述回答の中に不満やクレームが見受けられた際には、回答者の属性ごとに分析を行うことで、これまで気づかなかった傾向や問題点を発見できる可能性があると捉えています。

データ・アナリティクス入門

数字が紡ぐ学びの軌跡

データ加工はどう整理する? データ加工においては、数値に集約して捉える、目で見て把握する、そして数式に集約するという3つの方法を基本としています。 分析はどう進む? 分析の際は、まず目的(問い)を設定し、仮説を立てたうえでデータ収集・検証を繰り返すプロセスが基本です。さらに、インパクト、ギャップ、トレンド、ばらつき、パターンの視点と、グラフ、数字、数式というアプローチを組み合わせることで、多角的に情報を捉えています。 数値管理はどう考える? 具体的な数値の扱いとしては、代表値に単純平均、加重平均、幾何平均、中央値を用い、散らばりは標準偏差で表現します。ただし、平均値は外れ値の影響を受けやすいことに注意が必要です。 セグメントはどう見る? また、キャンペーンメールのデータと顧客データを用いた分析では、どのセグメントにどのような傾向があるかを明確にし、それをもとに有意差が見込める仮説を立てる際に、プロセス・視点・アプローチの組み合わせが効果的であると感じました。 検証の深め方は? 以前は、キャンペーンメールと顧客データを分析する際、インパクト、ギャップ、トレンド、ばらつき、パターンといった視点に十分意識を向けていなかったため、今後はこれらの視点をしっかりと取り入れながら仮説を立て、より精度の高い検証を行っていきたいと考えています。

「数値 × データ」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right