データ・アナリティクス入門

探る仮説、見える可能性

仮説思考の意味は? 仮説思考の重要性について学びました。複数の仮説を立て、フレームを活用することで検証すべき論点を網羅的に整理できる点が印象的でした。仮説を証明するためのデータ収集では、支持するデータだけでなく、他の仮説を排除するための情報も集める必要があると理解しました。このプロセスにより、検証マインドが向上し、説得力が高まる好循環が生まれると感じました。 現場での工夫は? コンサルティングの現場では、プロジェクト開始時に既に大論点が明確な場合が多い中で、自ら複数の仮説を検討し、大論点を中論点や小論点に分解して検証ポイントを明確にする作業が求められます。また、上位者との壁打ちを通じて精度を高めることで、効率的な問題解決が実現できると実感しました。

データ・アナリティクス入門

比較が生む新たな気づき

分析比較の重要性は? 今回の講義を通じて、分析の基本は「比較」にあると学びました。業務で調査データを扱う中で、過去のデータとの比較は無意識に行っていたものの、今回意識的に言語化することでその重要性を改めて実感しました。 データ整理ってどう? また、データの要素を整理する方法も学び、意味のある値とそうでない値を見分けることの大切さが身に染みました。これまではその違いを意識していなかったため、新たな視点を得る良い機会となりました。 比較で何が見える? 今後は、業務において製品の売上や調査結果、製造パラメータなどさまざまなデータを扱う際、必ず過去の事例や他社のデータと比較し、違いを明確に伝えることを心がけていきたいと思います。

データ・アナリティクス入門

単純平均だけじゃない!学びの深層

代表値選びのポイントは? あまりにも多くの消費者データを見る際、単純平均だけで全体を判断してしまう傾向にあると改めて感じました。そのため、代表値の計算方法を再検討する必要があると実感しています。代表値として単純平均、加重平均、幾何平均、中央値の4つの方法があること、またそれぞれのばらつきを標準偏差で評価するプロセスが欠かせない点を改めて認識しました。 標準偏差の意義は? また、標準偏差の公式は覚える必要がないといわれていますが、その理由についてより深く理解したいと考えています。√の記号に初めて触れたのは高校生の頃のことだったので、改めてその意味や背景について興味を持つようになりました。

データ・アナリティクス入門

仮説で切り拓く未来への道

仮説で何が変わる? 問題解決の第一歩として、仮説を立てる方法を学びました。仮説にデータ分析の視点を加えると、その説得力や信頼性が一層増すことを実感しています。また、仮説を立案することにより、自分の行動の筋道が明確になり、周囲への説明もしやすくなります。 3Cや4Pの意味は? 仮説の立て方については、特に3Cや4Pといったフレームワークを活用し、複数の仮説を網羅的に考えることの重要性を学びました。決め打ちにせず、幅広い視野で仮説を検討することで、日々の小さな問題にも柔軟に対処でき、周りを巻き込んだ改善活動にも効果的に取り組めると感じています。

「学び × 意味」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right