データ・アナリティクス入門

数字で読み解く成長の軌跡

定量分析の鍵は? サンクコスト、定量分析、MECE、ロジックツリーという手法について学びました。定量分析では、データのどこに注目し、どこを比較するかが重要であることが分かりました。特に、①インパクト、②ギャップ、③トレンド、④バラつき、⑤パターンの各視点からデータの意味合いを読み取ることに注力しました。 MECEの意味は? また、MECEに関しては「もれなく、ダブリなく」に分けるだけでなく、意味のある切り分け方が重要であることを理解しました。この考え方を基に、現状と理想のギャップを明確にし、具体的な行動につながる方向性をメンバーに示すことが求められると感じました。 課題解決の道は? さらに、現状の課題として、分析結果の共有時にメンバー間で理解のずれが生じたり、行動に直結しない点が挙げられます。なぜこのような分析が必要なのか、そこから得るべきものは何か、そして課題の解決につながる具体的な実施方法について、今後さらに明確にしていく必要があると感じました。

アカウンティング入門

数字が語るビジネスの秘話

数字だけじゃ足りる? 今回のナノ単科講座で、財務諸表のP/LとB/Sについて学んだ際、単に数字を眺めるだけでは十分な情報は得られないと実感しました。企業のビジネスモデルや提供価値を踏まえ、売上、原価、資産、負債といった各構成要素を想像することで、初めて数字の背後にある意味を読み取ることができると感じました。 部署でどう活かす? B/SとP/Lの基本理解が深まった今、これらは会社全体の最終結果指標とするだけでなく、管理会計の場面でも重要な役割を果たすと考えています。自分が直接携わる部署で、計画立案や実績管理に活かすためにも、B/S・P/Lの作成に取り組んでみたいという意欲が湧いています。部門の財務構造と全社の財務の連動を理解することで、より広い視野から部署の投資活動を考えることができると期待しています。 未来の実践は? また、Q2とほぼ同じ内容になりますが、この学びを活かし、今後は自部署でのB/S、P/L作成にも積極的に取り組んでいきたいと思います。

データ・アナリティクス入門

問いと仮説が導く学びの軌跡

仮説思考の始まりは? 常に目的意識を持ち、問いを立てることから仮説思考は始まります。まずは、何を知りたいのか、どんな結果を期待するのかを明確にしてから仮説を立て、必要なデータを集めて分析を行います。こうしたプロセスが、分析作業において無駄を省き、効率よく目的に近づくための鍵となります。 グラフ作成のポイントは? また、グラフなどの可視化資料を作成する際も、まず仮説や伝えたいメッセージ、そして対象となる相手を意識することが大切です。誰に何を伝えたいのかを明確にして、伝わりやすい構成でグラフを作ることで、情報の意味が正しく伝わります。 新たな発見はどう? さらに、問いを発見する一助として、最新の研究結果や知見に触れることが有効です。たとえば、研究論文を読む機会を増やしたり、仲間から新たな情報を得るなど、日常的に情報収集に努めることが求められます。説明資料を作成する際も、自分が何を伝えたいのかを整理し、論理的かつ簡潔な表現でまとめることが重要です。

戦略思考入門

戦略実践で武器に変える学び

戦略思考はどう整理する? 戦略思考とは、明確なゴール設定と、その達成のための戦略を検討するプロセスを意味します。まずは現状を正しく把握し、目標までのギャップを理解することが重要です。さらに、フレームワークを活用して思考を体系的に整理し、実行すべき事項とそうでない事項を判断軸で区別することがポイントだと改めて整理できました。 学びはどう身につく? また、Week1からの振り返りの中で、学んだ内容が既に忘れられている点に気付くとともに、忘れる=身についていないという認識に至りました。そのため、意識的に実践を重ね、自分の武器として定着させたいと考えています。 業務実践はどう進める? せっかく学んだフレームワークも、業務で実践しなければ忘れてしまう恐れがあるため、常に活用可能なフレームワークはないかを意識して実践していくつもりです。今後は、新規受注の成功事例や失注事例を、3C分析やSWOT分析を用いて検証し、次の打ち手の検討に結び付けたいと考えています。

アカウンティング入門

財務諸表で広がる視野と判断力

財務諸表の理解を深める方法は? 業務上、これまで漠然と頭でイメージしていた財務諸表について、今回の学習を通じてそれぞれの数字の意味や表の役割が言語化され、自分の理解を深められると感じました。 ITサービス企画職で活かす知識は? 私は現在、IT系のサービス企画職として、自社サービスの新規開発や維持管理を担当しています。その際、新規設備投資や損益計算、売上計画を立てることがあります。本講座で学ぶアカウンティングの知識を基に、サービスの新規開発や既存の維持・改廃の判断をより適切にできるようになりたいと考えています。 異業種交流から学べることは? まずは、本講座でしっかりと基礎知識を習得したいと思います。PL(損益計算書)などを扱う際には、ここでの学びを意識しつつ、適切な判断ができるよう心がけます。また、現在まで自社や同業界の市場にしか視野がありませんでしたが、他の業界の方々との交流を通じて、多様な視野や考え方も取り入れていきたいと考えています。

データ・アナリティクス入門

結果に響くMECE学びのヒント

結果を重視する理由は? 問題解決にあたっては、要因ではなく結果から考える姿勢が大切であると学びました。また、ロジックツリーを作成する際、MECE(漏れなく、ダブりなく)を意識することの重要性も実感しました。特に、厳密さ自体を目的とせず、第3階層程度で異なる要素を加えても構わないという点は、意外性があり印象に残りました。 メール分析のポイントは? 顧客向けキャンペーンメールの分析では、属性をMECEに分類することで、有意差のある項目を見つけ出すことが可能となります。これにより、意味のある仮説が立てられ、有意な差を検証できるA/Bテストの実施につながります。 属性戦略はどんな風に? 今後は、各属性がどのような方法で、どれほどの期間で入手可能かを確認した上で、MECEに分類し、ロジックツリーで整理することが必要だと考えています。このプロセスを通じ、特に注力すべき属性を明確にし、それぞれに応じたメール配信の戦略へと展開していきたいと思います。

データ・アナリティクス入門

幾何平均で拓く新視点の統計術

平均と標準偏差の意味は? これまで平均値と標準偏差をなんとなく使用していましたが、今回の学びを通じて、それぞれの利用目的や強みが明確になりました。特に、幾何平均については、これまで計算式が難しいという理由からあまり触れてこなかったものの、その特徴を理解できたことで、必要に応じて積極的に活用していきたいと感じています。また、標準偏差についても、グラフで見るイメージだけでなく、具体的な数値として求められることを知り、大変驚きました。 業務に活かす意図は? 業務では、マーケティング部門として販売実績の分析や経営層への成長率報告のデータ分析に役立てることができると実感しています。具体的には、各社の売上高を中央値や標準偏差で分析したり、販売実績の成長率に対して幾何平均を用いるなど、状況に応じた情報提示ができるように活用していきたいと考えています。 幾何平均の応用点は? また、幾何平均が適用できる場面について、さらに意見交換を行いたいと思います。

データ・アナリティクス入門

数字が語る!ストーリー分析

各要素はどう繋がる? 今週は、分析にはストーリーがあるという重要な視点を学びました。What、Where、Why、Howという各要素を明確に把握し、各段階のアクションが前の段階とどのようにつながっているかを振り返ることで、無駄のない論理的なアプローチが可能になることを実感しました。 数字の意味はどうなる? また、分析の前提として数字と率の両面から取り組むことの大切さを認識しました。これにより、現時点で顕在化している問題が自部門にとって大きな課題なのか、あるいは今回は重要な対策の対象ではないのかを判断できるため、効果的な意思決定の材料となります。 自分の考えは正しい? 今後は、自分でテーマを設定し、日々の業務データに基づいた分析や検証を積み重ねていきたいと思います。報告資料には自分の考えや仮説を取り入れ、チーム内で説得力のある説明を行うことで、今後の活動に役立つ具体的な提案を実施し、都度見直しながら継続的な改善を図っていきます。

データ・アナリティクス入門

比較が照らす学びの軌跡

比較の意義は何? 「分析とは比較である」という考え方を実践することができました。その他のデータと比較しながらその意味合いを考察することが、分析の基本であると再認識しました。具体的には、数字による集約、視覚的に捉える方法、そして数式で関連性を見るといった3点について学びました。数字の集約では、平均値のみならず、データの散らばりを示す標準偏差の役割も重要だと理解しました。また、データの中心を考える際には、単純平均、加重平均、幾何平均、中央値といった複数の指標があることを確認できました。 実務への応用は? ヒストグラムの作業では、実際に手を動かすことでその理解が深まり、自身の業務において作業プロセスのミスの発生度合いなどを視覚化する際に活用できると感じました。また、気象庁の温度データを用いた演習を通じて、公開情報からデータをダウンロードして利用する方法を再認識しました。今後は、こうしたデータ活用の手法を実務に積極的に取り入れていきたいと思います。

クリティカルシンキング入門

データ分析で見つける、次の一手

分析の進め方はどう? 目の前の数字だけで判断しがちですが、一歩踏み込んで分析することで、より詳細で解像度の高い状況にたどり着ける可能性があることが分かりました。情報の収集とその情報の分析に工夫を加えることの重要性を学びました。 データ活用に自信は? 問い合わせ者データや来場者データ、購入者データなど、さまざまなデータを保有していますが、これらを有効に活用できていないかもしれないという良い意味での疑念を持ちました。それぞれのデータを分析して歩留まりの数や率を向上させるため、具体的な施策を行っていますが、より効果的な施策を実現するために、各段階での分析作業を実施する必要があると感じました。 改善点は見えてる? アンケートデータの分析(分解)を通じて、改善点を効果的に導き出すことができそうです。実施予定の施策の効率や効果性を向上させることができれば、得られる成果を今より大きなものに変えられるかもしれないと実感しました。

戦略思考入門

逆算で切り拓く自分だけの戦略

どうしてゴール設定大事? 戦略思考とは、まず適切なゴール(目的)を定め、そのゴールへ向かうための道筋を具体的に描き、最速かつ最短で到達するための計画を立てることを意味します。また、何をするべきか、何をしないべきかを明確にし、自分ならではの強み(コア・コンピタンス)を持つことが大切だと実感しました。 面談で何を明確に? 具体的に活用したい場面としては、人事関連の1on1面談において、まずゴールを明確に設定し、その達成に向けた戦略(スケジュールやリソース、具体的なアクション)を整理して、お互いに合意したいと考えています。特に、キャリア計画では目標設定が定性的になりやすいため、まず自分のビジョンを明確にし、そこから逆算する形でゴールを設定し、そのための戦略、特に「やらないこと」をも含めた計画を学びたいと思っています。現在はまだ具体的な行動計画には至っていませんが、今後の学びを通じて、より実践的な戦略を築いていきたいと考えています。

クリティカルシンキング入門

数字を超えた視点の冒険

数字の見方は本当か? 数字をただ見るのではなく、視覚化やグラフ化することで、より多角的な意味を見出すことができると実感しました。また、MECEの基本的な考え方についても理解が深まり、モレやダブりを意識することの重要性を学びました。「本当にそうか?」と問いかけるプロセスが、短絡的な結論を避ける上で大切だと考えます。 疾患領域はどう選ぶ? 新規薬剤や新たな事業領域の開発を考える際、まずは対象となる疾患領域を絞り込む必要があります。さらに、その絞り込んだ後のポピュレーションや、疾患の重篤度、患者数、事業性、競合環境など、さまざまな切り口からニーズの有無を検証することが求められます。 課題分解は的確か? また、課題をどのように分解し、分解が適切に行われているかを意識することも重要です。一人で考え込むのではなく、メンバー間で様々な視点を共有し、切り口のアイデアやモレ・ダブりの有無を話し合いながら進めていくことが効果的だと感じました。

「学び × 意味」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right