データ・アナリティクス入門

平均値の罠に気づいてデータを活用する方法

平均値の危うさを再認識 今回の学習で、平均値の危うさを改めて知りました。例題を通じて、グラフにすると簡単に理解できる数値もあれば、解釈が難しい数値もあると感じました。代表値と散らばりをうまく活用して、仕事に活かしたいと思います。 正規分布と2SDルールに興味 これまでも様々なグラフを見たことはありましたが、平均値の名称と内容について初めて深く理解できました。特に、正規分布と2SDルールはとても興味深かったです。 標準偏差の応用は可能? 標準偏差の数値でデータの散らばりを明確にすることも応用できそうです。弊社オウンドメディアにおけるコラムのオーガニック流入の記事ごとの順位を、分布グラフを用いて検証してみたいと思いました。それにより、カテゴリーを大分類し、リライトの優先順位を決めるなどの応用が期待できます。 新たな発見を期待して まずは、今回学んだ内容をしっかり復習し、これまで手をつけていなかった集計にも活用してみます。そうすることで、新たな発見や課題が生まれることを期待しています。さらに、TOP10の記事のキーワードリサーチにも、この解析手法を試してみたいと思います。

データ・アナリティクス入門

データが効く!新たな分析視点を実践

代表値はどう役立つ? 今まで、分析に代表値をほとんど使ったことがなかったと反省しました。業務で特に活用できそうだと思ったのは、加重平均と中央値です。 加重平均でどう評価? まず、加重平均を販売施策の効果分析に利用しようと思います。施策ごとに異なる予算をかけているため、予算に応じて効果を加重平均で評価します。これにより、施策の効率性を測り来年度の販売施策立案に活かせます。具体的には、販売施策の実績を「かかった費用」「成約金額合計」「販売台数」「粗利益額」「費用対効果」などの項目でまとめておきます。そして、年度内に加重平均で評価し、費用対効果の良かった施策とその要因を明らかにします。 中央値はどう活かす? 次に、中央値をSNSマーケティングの効果測定に役立てます。たとえば、Instagramにおける直近一年のインプレッション、リアクション、アクティビティをまとめ、中央値を算出します。これにより、通常の反応水準を把握し、外れ値に該当する投稿を見つけて分析し、今後の投稿戦略に活用します。具体的には、外れ値を見つけ、増やしていくべき投稿内容や逆に今後は減らしていくべき投稿の傾向を把握します。

アカウンティング入門

P/Lが明かす企業成長の秘密

P/Lで儲けはどう見える? P/Lの構成から、企業の儲けの構造がどのように形成されるかを理解できました。事業コンセプトや経営ポリシーがP/L上に表れる点も興味深いと感じました。客回転数や客単価、材料費と売上総利益、販管費など、それぞれの項目にどのように影響があるのかがよく示されています。 講座の魅力は何? この講座は、アカウンティングの内容ながらマーケティングのような切り口も取り入れており、非常に刺激的でした。 経営分析はどう進む? 今後、企業の経営分析にこの知識を活用していきたいと考えています。業界内での相対比較に着目し、同じ市場内の自社、パートナー企業、クライアント企業、競合企業といった立場で比較しやすい指標を検討する予定です。また、過去3年から5年の推移を分析することで、変化点やその要因を把握できればと考えています。 比較で差は何? 具体的には、まず関心のある業界に焦点を当て、代表的な3社のP/Lを比較して各社の儲けの構造の違いを読み取ります。その後、決算報告資料を参照して各社の主張を確認し、さらに関連するメディアの記事を通じて有識者の評価なども調査していく予定です。

データ・アナリティクス入門

中央値でひも解くデータの秘密

代表値と分布はどんな意味? データ分析では、まず代表値と分布の理解が重要です。代表値には単純平均、加重平均、幾何平均、そして中央値の4種類があり、それぞれの特徴を把握する必要があります。一方、分布は標準偏差を用いて表現され、対象に応じた適切な代表値を選ぶことが求められます。 中央値はどう計算する? そのため、中央値や標準偏差といった指標は数式に基づいて算出されますが、原理原則を理解すればエクセルの数式機能を活用して求めることが可能です。 平均と中央値の違いは何? この考え方を踏まえて、昨年度に最も支払い額が大きかった顧客のデータを例に、代表値と分布を算出してみます。特別な事情で多額の支払いが発生しているため、単純平均と中央値の数字の違いを確認し、代表値としては中央値のほうが適していると考えられます。 期間内のデータ比較はどう? さらに、対象となるのは2024年4月から3月までの期間の顧客データです。各顧客に対して毎月の支払額の単純平均と中央値を求め、また支払いの内訳に記載されている各顧客品番ごとの費用についても、同様に毎月の単純平均と中央値を算出して比較していきます。

データ・アナリティクス入門

平均と中央値が紡ぐ成長ストーリー

なぜルールが必要? データを取り扱う際は、一定のルールに則り全体の目線をそろえることで、伝えたい内容が明確になります。そのため、データからメッセージや仮説を引き出す際には、適切な代表値を選択することが重要です。たとえば、平均値については、単純平均や幾何平均など計算法の違いを意識し、正確な表現を心がける必要があります。 どんな手法が有効? また、データのばらつきを示すには、関数的な手法を用いてビジュアル化する方法が効果的です。舞台の単月入場率を年間の数字に換算する場合、各月の値を単純に平均するのではなく、正確な情報を伝えるために公演数で重みづけした加重平均を用いると良いでしょう。さらに、チケット単価のばらつきにより生じる外れ値の可能性を考慮し、中央値も併せて検討することが求められます。 分析に新たな示唆は? 日々の分析においては、平均値だけに頼らず中央値の視点も取り入れることで、その乖離から新たな示唆が得られるかを考えることが大切です。数字の集計表としてまとめるだけでなく、ビジュアル化によって情報の具体性と理解しやすさを高め、平均という言葉の使い方にも注意を払う必要があります。

データ・アナリティクス入門

数字から広がる仮説の世界

数字加工はどう進む? 3週目では、仮説を立てるために数字をどのように加工するかを学びました。数字から意味を見出すには、まずデータを加工し、次にグラフなどでビジュアル化するという手順が重要です。具体的には、データの代表値を用いた加工や、ばらつきを感じた際には標準偏差を活用するなど、データの特性に応じた方法を選択します。これにより、グラフ化された情報から傾向をより把握しやすくなります。 手法の応用は? また、データ加工の手法が多様であることを理解した上で、毎月集計している売上や顧客層の分析にどの方法が適用できるのかを検討する意欲が湧きました。顧客層に特にばらつきが見られなくても、着目する観点によっては標準偏差を使った加工が有用である可能性があります。そのため、まずは代表値を用いてデータを整理し、グラフにしてみることが考えられます。 売上分析の疑問は? さらに、毎週抽出している売上データに目を向け、加工を通じて仮説を立てる試みも進めたいと思います。売上が高い日と低い日があるという傾向に注目し、どの代表値を活用するのが最適かを検討しながら、より具体的な仮説を構築したいと考えています。

アカウンティング入門

P/Lでひも解く成功の秘訣

P/Lの理解はどう? P/Lの理解を深めることで、表面的には同じように見えるビジネスでも、実際に資金の流れを追っていくと全く異なる性質を持つことに気付きました。単に売上高だけに注目しても、ビジネスの本質は見えてこないと実感しました。 販管費と原価の意義は? また、販管費と原価という二つの要素に着目するだけで、さまざまな観点から業務を捉えることができる点には驚かされました。このシンプルな視点が、ビジネスの理解を大きく深める手助けになると学びました。 何を学び取った? 具体的には、以下の三点が学びとして大変印象的でした。 ① 同業他社の分析を通じ、より良いサービス構築のヒントを得る。 ② 自社の強みや弱み、改善点を客観的に見つめ直す。 ③ 可能な限り多くの企業のP/Lを読み、様々な事例に触れる。 業界の多様性はどう? さらに、同じ業界内でもビジネスモデルには多様性が見られることを知り、興味が一層深まりました。自分の業界はバリエーションが少ないと思っていたものの、実際は全く異なるアプローチが存在することに気づき、他の分野での実例についても知りたいと感じています。

データ・アナリティクス入門

代表値が語る!新たな比較のヒント

グラフだけで十分? これまで、単にグラフを用いて数値を視覚的に比較する方法に頼っていました。しかし、代表値に着目した比較はほとんど行っておらず、今回、加重平均、幾何平均、中央値、標準偏差といった比較に有用な数値があることを学びました。 業務への活用は? この学びを自分の業務にどう活かすかが、今後の課題だと感じています。手元にある数字の代表値を用いることで、どのような比較ができるのかを明確にすることが、新たな発見につながるデータ分析のカギになると考えています。 他地域比較は? 特に、前年や他地域との比較において、データを代表値に置き換えて検証することで、新たな示唆が得られるかもしれません。現状、扱っているデータはシンプルですが、代表値を取り入れることで比較分析がより効率的になる可能性を感じました。 数値分析を実践? まずは、現時点でのデータの代表値を算出することから始め、加重平均、幾何平均、中央値、標準偏差を用いた分析にチャレンジしてみたいと思います。これによって、短時間で効果的な比較が実現できるか、または新たな発見があるのかを検証していきたいです。

データ・アナリティクス入門

グラフが語る数字の物語

グラフ化の効果は? データ分析では、まずグラフ化して数値を視覚的に確認することで、比較がしやすくなる点が基本だと学びました。これにより、数字の背後にある特徴や傾向が一目で把握できるようになります。 代表値の選び方は? 講義では、データの代表値として「単純平均」「加重平均」「幾何平均」「中央値」があること、そしてデータのばらつきを示す「標準偏差」の重要性を改めて認識しました。どの平均値を用いるかは、分析の目的に応じて選ぶ必要がある点も印象的でした。 必要な基礎理解は? 普段の業務では、無意識のうちにデータ収集やグラフ化を行っていたため、なぜそれが必要なのかを体系的に学ぶことができたのは大変有意義でした。講義を通して、さまざまな角度からデータを評価できる手法を身につけることができました。 多角的評価の理由は? また、クライアントや社内のデータを用いたマーケティングやプロモーションの計画では、ピクトグラムや棒グラフで全体感を把握した上で、単純平均だけでなく「加重平均」「幾何平均」「中央値」「標準偏差」などを組み合わせ、多面的な視点からの分析が重要であると実感しました。

データ・アナリティクス入門

SNS分析で得た新たな学びとテクニック

代表値の使い分けは必要? 代表値と散らばりの両方を意識する必要があることを学びました。代表値には単純平均、加重平均、幾何平均、中央値があり、特に平均値に3つの種類があるため、使い分けが重要です。 ビジュアル化の選び方は? また、ビジュアル化の重要性についても考えさせられました。どのようなグラフを使うかは分析したい内容に依存し、この点は経験から学んだつもりでしたが、実際には正確な知識が不足していたことを改めて認識しました。 各種データの分析に標準偏差を使おう これまでは単純平均しか算出したことがなかったため、今後は必要に応じて3種類の平均値を意識して使い分けるようにします。SNS投稿の反応を分析する際もばらつきを考慮せず、平均値だけで傾向を把握していましたが、標準偏差も用いることでより正確な把握・報告ができそうです。 例えば、SNS投稿に関する実績報告時には、エンゲージメント率などを平均だけでなく標準偏差も使用して分析しようと思います。投稿の種類や内容のカテゴリーによって差があるのかどうかも検討しつつ、ビジュアル化する際は適したグラフを選ぶことも重要だと考えます。

クリティカルシンキング入門

数字が語る真実と見えない可能性

数字分解で何が見える? 数字を分解することで、今まで見えなかったものが見えてくることに改めて感動しました。しかし、正しくデータを分析するためには、多くの項目を分解することが重要です。たとえ何も見えなかったとしても、それ自体が「見えなかった」という情報を得られる点が印象に残りました。 グラフで何が見える? また、数字をグラフなどで可視化することで、視覚的に理解できることの重要性を再認識しました。 業務分析の深さは? 私は現在、業務の取り組み状況を分析し、弱点を教育する部門に所属しています。分解できる数字は限られていますが、その中で複合的に分解を繰り返し、表面的な分析にとどまらないよう心掛けています。これにより、真の課題を明らかにし、教育の内容や方針を考察できます。 教育方針の決め方は? 2025年度の教育方針を考えるにあたって、まずは12月までに大枠を検討します。さらに、詳細な教育方針や内容については、対象層に分けてチーム内でよく検討し、1月中旬までに考えます。その後、上司の意見を取り入れてブラッシュアップし、最終的には3月初めに発信できるよう進めていきます。

マーケティング入門

顧客の痛みを解消する分析力の重要性

インサイトとペインポイントの重要性とは? ニーズはポジティブな表現であり、さらに良くしたいという欲求もありますが、我慢が可能です。一方で、顧客のインサイトにはネガティブな要素が多く、損失や痛みの解決に繋がるものであれば、需要が高いと言えます。特に、ペインポイントというすぐにでも解決したい事柄に対する解決の重要性を学びました。 明確な区分が生む提案力 ウオンツ、ニーズ、インサイト、ペインポイントを明確に区分して、提案・分析を行うことが大切です。今回、ネガティブな事柄の解決が顧客にとって重要であるという点に納得できたので、この考え方をしっかりと理解し、深い分析に繋げていきたいと思います。顧客調査をしても、基礎知識が曖昧だとズレが生じるため、効果のある事柄に時間を充てられるよう努めたいです。 新規事業提案に必要な習慣は? 将来的には新規事業の提案ができるようになることを目指し、常に考える習慣をつけることが大切です。必要な時に具体的に文言化できるよう具体的なインサイトやペインポイントに繋げるために、調査力と納得感、自分事として考え、アウトプットする習慣を身につけていきます。

「分析 × 表」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right