戦略思考入門

経験が築く未来の戦略

戦略の略し方は? 戦略という言葉の「戦」を略するという考え方と、実際の日々の業務との間にギャップを感じています。略する際の判断基準は、行動から得た経験をアップデートしていくことにあると考えています。しかし、BtoBやBtoCといった異なる手段で経験値の向上に取り組む企業が同じ市場に相応数存在する場合、結果として経験値の取得件数が多い企業が市場のチャンピオンになる可能性が高いのではないかと思います。この考え方が当てはまらない事例がある場合、戦略構築の要素に技術革新を織り込んでおり、その技術革新を重要な因子として位置付けているという理解でよろしいのでしょうか? 失敗と試行の意味は? 目指すべき目標に対して最短ゴールを模索する中で起こる大きな失敗や、幾度かの試行錯誤は、個人レベルでの取り組みに比べ、一定規模の組織が実行する際には、膨大な意識改革や人事評価制度の見直しといったハードルの高さを実感します。それでも、この課題は現代ビジネスにおいて非常に重要なテーマであると感じています。 共感育むには? 現代の激しく変化するビジネス環境と技術革新の中では、できるだけ多くの自社メンバーが同じ時間軸で共感をしながらスキルアップしていくことが理想です。その結果、組織全体のスキルの底上げが進み、市場にしっかりと向き合える体制が維持できると考えています。人事評価制度やインセンティブといった従来の施策以外で、いかに共感を得られるかという点が一つの疑問として残っています。

データ・アナリティクス入門

グラフと数値に学ぶ新視点

グラフ選定はどう決める? まず、グラフ選定の際の仮説の重要性を実感しました。これまで、複数のグラフを何となく並べ、どのグラフが伝えたい内容をより効果的に示すかという観点で選んでいました。しかし、自分が何を比較し何を見たいかを明確に設定した上でグラフを選ぶことの大切さに気付くことができました。 標準偏差、どう理解する? 次に、標準偏差への理解が深まりました。過去に数値として用いた経験はあったものの、どのような場面でどのように解釈すべきか、また算出方法や示す内容について十分に言語化や深堀りができていなかったと感じています。これを機に、もう少し詳しく学びたいと思います。 加重平均、どう捉える? また、ちょうどこの時期に話題となっている最低賃金改定を通して、「加重平均」という言葉の意味が理解できたのも印象的でした。普段から苦手な「割合」や「率」の変化については、今後データを取り扱う際により慎重に見極めていこうと思います。 平均と分散の見方は? さらに、平均値はこれまでピックアップすることが多かったのですが、数字のばらつきについては、存在を漠然と理解していたものの、どのように処理すればよいのか、そこからどんな示唆が得られるのかを考えてこなかったと実感しました。今後は、各種スコアや遷移率を分析する際、平均値だけでなく分散から見える傾向も踏まえ、案件や地域ごとの特性をより多角的に捉えられるよう、データの切り口や分析方法の幅を広げていきたいと思います。

リーダーシップ・キャリアビジョン入門

キャリアを見つめる新しい視点

キャリアの軸は何? キャリアを考える上で重要な概念として、「キャリア・アンカー」と「キャリアサバイバル」があります。この二つは、個人の判断基準やモチベーション、キャリア構築に深く影響を与えるため、キャリア形成の手法であると同時に、メンバー育成においても重要な認識です。ただし、「キャリア・アンカー」と職業を直接結び付けることは避けるべきです。 戦略はどう描く? 「キャリアサバイバル」は、職務と役割の戦略的なプランニングです。目指すキャリアと組織が求める役割を理解し、試行錯誤しながら、自らが進めたいキャリアと組織から求められるアウトプットを両立させることが求められます。 価値観はどう確認? 新しい仕事やプロジェクトを始める際、初めて接するメンバーと仕事をする場合には、各メンバーが持つ判断基準や価値観を認識することが重要です。これによって、目標設定やタスクの割り振りが適切になり、メンバーが仕事の意味や意義に共感しやすくなることで、モチベーションの向上につながります。 成果と成長は? これまで一緒に仕事をしたことがないメンバーと協働する際には、その人の能力やスキルを確認するだけでなく、どのような判断基準や価値観を持っているかを把握するよう努めましょう。また、仕事を割り振る際には、その仕事が求めている成果やアウトプットを共有するとともに、その仕事が各メンバーのキャリアにどのように影響を与えるかや、どのように貢献できるかを伝えることが重要です。

クリティカルシンキング入門

点から線へ広がる学びの旅

学びの意味は何? この6週間の学びを通じて、知識が点から線へと統合される感覚を持つようになりました。これからは、以下の流れに沿って課題に取り組み、その答えを導き出していきたいと考えています。 問いの定義は何? まず、考え始める前に「問い」が何であるかを明確にすることが重要と感じています。次に、現状を丹念に分析するため、データを細かく分解し、ひと手間加えることでより深く理解できるよう努めます。また、視覚的に把握するために、MECEやロジックツリーといったフレームワークを活用し、論理の流れを整理します。 主張の組み立てはどう? さらに、根拠に基づいた主張の組み立てを心がけ、伝えたい相手に的確に伝わる文章や資料作成を実践していきます。その際には、作文では主語や述語、文章の長さに注意し、資料作成ではリード文を工夫し、データの順序や主張の強調、さらにグラフなどを活用して視覚的な伝達にも配慮します。 問題解決の鍵は何? 特に、営業課題や人事課題など具体的な問題に対しては、日々発生する小さな問題も含め、何を解決したいのかを常に意識しながら分析と主張のプロセスを実践していきたいと思います。そのため、まず一つの対象を決め、課題に対する答えを導き出すことに注力し、実施期限を設けることで意図的に時間を確保していきます。さらに、資料化した内容は他者と共有し、理解度や納得感についてフィードバックを得ることで、より良い解決策を見出していこうと考えています。

データ・アナリティクス入門

数字が紡ぐリアル戦略ストーリー

数字の意味は何だろう? 分析のアプローチについては、ただ単に分析を進めるのではなく、数字に基づくストーリーを意識することの重要性を実感しました。統計データを見る際にも、平均値だけでなくばらつきを把握することで、より正確な判断ができると感じています。データ全体の傾向を理解した上で、平均、中央値、最頻値といった代表値から最も適切なものを選ぶことが大切です。 課題解決の鍵は? また、顧客の課題に対して解決策を提案する場合、やみくもな分析ではなく、具体的な数字に裏打ちされたストーリーによって、提案の確度を高め、顧客の納得感につなげることが求められると考えています。顧客自身が「これなら解決できる」と信じ、実行に移していただくためには、具体的で説得力のある根拠が不可欠です。 戦略の軸は何か? さらに、これからある不動産ブランドの戦略を分析する際には、まず「何を知りたいのか」という問題意識をはっきりさせ、最終的にどのような結論に導きたいのかを明確にすることから始めます。その上で、価格帯やエリア、スペックなど細かい情報に分解し、必要なデータが取得可能かどうか確認することが大切です。 仮説はどう練られる? 次に、取得したデータをもとに、なぜその戦略が採用されているのかという仮説を立て、検証の優先順位をつけながら実態を深く理解していく流れが有効だと感じました。こうした手法を通して、現実に即した分析が行え、説得力のある結論に結びつくと確信しています。

クリティカルシンキング入門

思考をアップデート!挑戦の日々

今後の学びはどうする? 第一週目は、今後の学びの進め方やクリティカルシンキングを学ぶ目的が明確になったと感じました。多くのハウツー本がある中で、改めてクリティカルシンキングを学ぶことで、自分の思考のOSをアップデートし、自身を喜ばせることにつながると思います。時間が有限である以上、限られた時間で最良の意思決定を行い、今情熱を注いでいる事業を飛躍させたいと考えています。 3つの視点はどう活かす? 今週は、クリティカルシンキングの基本的な枠組みとその必要性について学びました。ビジネスの現場では、もう一人の自分とも言える視点を持ち、3つの視点を効率よく活用することで、ビジネスを推進し、目の前の人々に影響を与える力を養えると実感しました。 実行評価はどうする? また、クリティカルシンキングは目標設計や軌道修正における意思決定に有用だと感じています。現状を正しく把握し、問題解決に導くための適切な解決策を見出すことができるためです。現在、期初に目標設計に注力していますが、いつまでも考え抜くのではなく、実行フェーズで正しい評価基準をもとにビジネスを進めることが必要だと思います。 自問自答は意味ある? さらに、日々のビジネスアクションにおいては、1日に何度か「それって本当か?」と自問自答する習慣を持ちたいと考えています。他人の意見にすぐにYESと言うのではなく、自分自身の意見の背景やロジックを明確にすることで、より堅実な判断ができると思います。

データ・アナリティクス入門

データ可視化で見えてくる新たな発見

分析の視点を再確認する方法とは? 前回の学びから、分析における視点として5つの要素、すなわち「インパクト」、「ギャップ」、「トレンド」、「ばらつき」、「パターン」に分けて考えることが有用であると再確認しました。数字をただ眺めるだけでは気づきが得にくい場合でも、目的に応じた適切な可視化を行うことで数字の意味を見出すことが容易になります。特に、可視化は自分の理解を深めるだけでなく、説明相手の理解や認識の統一にも役立つと感じました。 平均の取り方をどう活用する? 普段の仕事でもデータを扱っており、どのような代表値を用いてその数字の塊を特徴づけて解釈するかを意識していましたが、この学びを通じてさらに細かな平均の取り方を再認識しました。特に幾何平均の活用については、施策立案や来期戦略、予算作成の際に大いに役立ちそうです。例えば、年間の応募推移を過去5年間にわたって見たときに、どのようにトレンドの推移を適切に抽出するかなどを具体的に考えることができました。 日々のKPI管理で使える可視化手法は? また、日々のKPI管理についても適切な可視化が求められます。現在は折れ線グラフで推移を見ていますが、前年比や積み上げグラフなども必要かもしれません。ユーザーの行動を分析する際には、ヒストグラムを活用して傾向を掴むことも考えています。具体的には、インストールからコンバージョンまでの期間別ユーザー数を把握することで、より詳細な分析が可能になると考えています。

リーダーシップ・キャリアビジョン入門

エンパワメントで輝く自律リーダー

エンパワメントとは何か? エンパワメントという言葉は以前から耳にしていましたが、今回、具体的な意味や方法について学ぶ機会がありました。目標達成に向け、組織の構成員が自律的に行動するためのリーダーシップ技術として、エンパワメントの重要性を実感しました。 共有と支援の秘策は? 具体的には、まず目的やビジョンを共有し、対象者の状況を把握した上で、適切な仕事を依頼するというステップがあり、必要に応じて支援を行うことがポイントです。これらのプロセスでは、常にコミュニケーションが不可欠であると再認識しました。 整理で何が変わる? また、実際の業務においても、無意識にエンパワメントの考え方を取り入れていた部分があったと感じますが、今回改めて整理することでその意味をより深く理解できました。今後は、目標やビジョンをしっかりと伝え、相手に理解・納得してもらうことを重視したいと考えています。その上で、各メンバーの状況に応じた仕事の依頼や、適切なフォローも行っていく所存です。 チーム内でどう調整? まずは、コミュニケーションの時間を意識的に確保し、メンバーの特性やモチベーションを理解することから始め、それぞれに適した目標や計画の策定に取り組んでいきたいと考えています。一方で、仕事の優先度が高くないメンバーや、価値観の異なるメンバーに対して、どのように目標を共有し計画を立案すればよいのか、その具体的な方法を知りたいという思いもあります。

クリティカルシンキング入門

実践で磨く分解の極意

全体像はどう把握? 本講座では、全体をしっかり定義した上で作業を進める重要性を実感しました。まず全体像を捉えることで、分解の作業がスムーズになり、全体に漏れがなく整然とした分析が可能だと感じました。 MECEは何を意味? また、分け方においてはMECE(抜けや重複がない)を常に意識することが大切だと学びました。例えば、単に「若者」や「リピーター」といった大雑把なカテゴリーで分類してしまうと、定義が曖昧になり、漏れやダブりが発生する可能性があるため、年齢や来店頻度など定量的な指標を用いることが有効です。 複数切り口は有効? さらに、仮説を持ちながら複数の切り口でデータを分類する手法には大きな意義を感じました。年代を10代ごとに分ける方法や、学歴など別の視点で区切る方法など、異なるアプローチを試すことで、より実態に即した傾向を掴むことができると感じました。 視覚チェックで見える? 加えて、図を描くなど視覚的な手段を用いてチェックすることで、直感だけでは気付けなかった課題を明確にできる点にも非常に参考になりました。最終的には、分けた後に「本当にそうか?」と問い直すプロセスが、より深い理解と洗練された分析に結びつくと実感しています。 実践から何を得る? 最後に、考える前にまず実際に分けてみることの大切さを学びました。実践を通じて自分自身の仮説を検証し、新たな視点を得るプロセスは、今後の分析活動に大いに役立つと感じています。

データ・アナリティクス入門

データに基づく未来予測の極意

データとは何か? データとは一般的に定量データを意味し、分析とは具体的に要素を分けて整理し、各要素の特性や構造を明確にすることを指します。分析を進める際には、比較対象や基準を設け、それらと比較することが重要です。 データ加工はどう行う? これから学ぶデータも同様に、定量データに焦点を当てます。このデータに応じて、適切な加工法やグラフの見せ方を考える必要があります。たとえば、傾向や頻度を比較する際には縦のグラフが有効で、量の大小を比較する際には横のグラフが効果的です。 分析の目的をどう設定? データ分析を始める前には、【目的】すなわち何のためにデータを分析するのかを明確にし、【仮説】としてどのような項目をどう分析するかをあらかじめ考えておく必要があります。 どんな分析を実施する? 例えば、以下のような内容についてデータ分析を行っていきたいと考えています。 - 優良顧客のデータ分析 - メンテナンス業を伴う機械の交換パーツ分析 - メールマガジン配信後の開封率、クリック測定 - 精度の高い売上予測 - リピート商品の仕組み化に向けた分析 これらの分析によって、例えば上半期の売り上げの高い上位20%の顧客データを抽出し、カテゴリー化することができます。それにより、特定の商品が売れている理由を仮説として考え、その仮説に基づいてキャンペーンメールを配信することで、受注の拡大や新たな分野への展開を図ることが可能になります。

データ・アナリティクス入門

実務に直結!データ活用の学び

実務講義はどう感じる? 今週までの講義やグループワークを終え、本格的なデータ加工、代表値とビジュアル化、データ傾向の把握といった実務に直結する講義が始まりました。私自身、エクセルの基本理解が十分でなかったため、代表値や散らばりを用いてデータ傾向を確認する方法や、グループワークで触れたピボットテーブルやクエリを活用した作業効率化に関する気づきは、今後につながる貴重な学びとなりました。これまでの業務の進め方を見直す上でも、大変有意義な受講でした。 業務効率向上の秘訣は? 所属企業ではグループ店舗のデータ集計・分析や戦略提案を担当していますが、基本知識の不足から作業効率が悪く、長時間を要することが多く苦労していました。しかし、今回の学びを通じて、データの意味を正しくとらえる方法や、効率的な集計作業の進め方が理解できたため、すぐに実務に活かしながら、少しずつスキルを向上させていこうと考えています。 基本技術はどう磨く? さらに、グループワークを経て代表値や散らばりの重要性に加え、エクセルのピボットテーブル操作など、データ集計の基本技術の習得が急務であると実感しました。そのため、早速オンライン動画でエクセル操作(ピボットテーブル活用)のレクチャーを受け、本日以降はこれまで触れていなかった基本知識をさらに深めるとともに、データの傾向把握のために代表値や散らばりに注目した確認を行い、誤ったデータ解釈につながらないよう注意していこうと思います。

アカウンティング入門

数字で読み解く成長の軌跡

提供価値は何? Week2に引き続き、提供価値とコンセプトに基づいて考える重要性を改めて実感しました。PLを確認する際は、売上高、営業利益、経常利益、当期純利益といった大きな数字で全体像を把握し、比較や対比を通じて傾向の変化や違いを見極めることが大切だと学びました。 経常利益の意味は? また、これまでは当期純利益に注目していましたが、投資家の視点では毎年の稼ぐ力を示す経常利益に注目するケースが多いと知り、新しい視点を得ることができました。さらに、BSで企業の体力を見るだけでなく、通常の収益と費用が分かる経常利益を通じて、継続して稼ぐ力があるかどうかを判断することの意義を感じました。 企画収益はどうなる? 新規事業や企画の立案時には、まずその企画の提供価値を明確にし、コンセプトに基づいてどのように収益を上げるか、売上高や営業利益、経常利益がどのように変動するかを論理的に考える習慣を身につけたいと思います。当期純利益に固執せず、売上高、営業利益、経常利益のバランスが競合他社と大きく乖離していないかどうかも、検証の観点に加えていきます。 異業種のPLは何を示す? そのため、提供価値とコンセプトに立ち返る思考法を定着させるために、同業種だけでなく異業種のPLを定期的にチェックする習慣をつけたいと考えています。今回のカフェ事例のように、身近でイメージしやすい業界のPLから分析を始めることで、理解を深めていこうと思います。

「考え × 意味」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right