マーケティング入門

ポジショニングで見つける学び

既存商品の強みは? 教材で紹介されたある企業の事例を通して、既存商品の強みを活かしながら新規顧客獲得を図る手法を学びました。具体的には、自社商品の特徴の中から2つの軸を設定し、その軸に基づいてポジショニングマップを作成することで、競合との差別化ポイントを明確にできる点が効果的であると感じました。また、「S(セグメンテーション)、T(ターゲティング)、P(ポジショニング)分析」のうち、SとTは受講前から理解しており、従来の業務でも活用してきたため、本講義でPの重要性を再認識できたことは大きな収穫です。 ペルソナの再評価は? これまでは、狙いたい層から逆算してペルソナを構築し、市場のセグメンテーション、ターゲティング、さらに広報施策へと展開する流れで進めていました。しかし、定期的なポジショニング分析を取り入れることで、ペルソナを再評価し、複数のペルソナやポジショニングマップを保有できることが分かりました。それぞれのターゲットに応じた訴求ポイントを明確にすることで、同一商品から多様な顧客の獲得につながる可能性があると考えています。 学生募集の戦略は? また、学生募集の広報活動における一例では、近年新設された学部を含む、さまざまな学部での募集戦略が検討されています。従来は、情報系志望者や理系学生をターゲットとし、WEB広告やDM施策を中心に実施していました。しかし、競合と比較した場合、自学における「少人数指導」や「統計学・経営系科目の充実」といった強みを活かすことで、理系や情報系に興味はあるものの理数科目に苦手意識を持つ文系学生にも響く広報が可能になると考えています。 競合校調査はどう? まずは、ポジショニングマップを作成するために丁寧な競合校調査を行い、その仮定を裏付けるデータを確認することが重要です。これが実現すれば、ターゲット別の媒体制作の提案がよりスムーズに進むと考えます。また、情報学部だけでなく、経営、国際、看護など他の学部においても同様に競合校調査を実施することで、自学全体のターゲット層をより広げていくことができると期待しています。

データ・アナリティクス入門

標準偏差と幾何平均が紡ぐ成長

どんな学びが印象的? 今回の学びで特に印象に残ったのは、「標準偏差」と「幾何平均」の2点です。 標準偏差の計算手順は? まず、標準偏差についてです。計算手順はまず平均を求め、その後、各データと平均の差を求め、差を2乗します。そして、2乗した値の平均(=分散)を算出し、その平方根を取ることで標準偏差が得られます。具体的な例では、データが3, 4, 5, 5, 8の場合、平均は5となり、各データとの差は2, 1, 0, 0, -3です。これらを2乗すると4, 1, 0, 0, 9となり、分散は2.8、標準偏差は√2.8 ≈ 1.673となります。また、Excelでは=STDEV.P(範囲)という関数を用いて計算できます。 幾何平均の計算方法は? 次に、幾何平均についてです。こちらは、最終値を初期値で割った値を計算し、期間に応じた累乗根(平方根や立方根など)を求めます。その値から1を引いたものが平均成長率となります。例として、初期値が100、最終値が209の場合、成長率合計は209 ÷ 100 = 2.09となります。2年間での成長率なので平方根を求めると√2.09 ≈ 1.45となり、1.45 - 1 = 0.45(45%)が幾何平均成長率となります。 中央値だけで評価すべき? これまでは中央値を代表値として重視してきましたが、今回の学びで、データのばらつきを示す標準偏差の重要性を改めて認識しました。例えば、AIモデルの予測精度の評価において、これまでは絶対誤差率の中央値だけを使っていましたが、標準偏差を加えることで信頼度をより的確に評価できると感じました。 AI評価はどう変わる? 実際、私が担当する不動産評価のAIモデルにおいても、最新のトレンドを反映するため定期的にアップデートを行っています。これまでは精度評価において中央値のみを用いていましたが、今回学んだ標準偏差を活用することで、モデルの精度のばらつきをより正確に把握できると理解しました。今後は、より正確な評価のために、標準偏差も加えた指標で測定していく予定です。

クリティカルシンキング入門

今週の学びを振り返って、見えてきた成果と課題とは?

日本語を正しく使うコツは? 今週学んだ内容は「日本語を正しく使う」「文章を評価する」「手順を踏んで書く」の3点であり、これに加えて「ピラミッドストラクチャー」という関連するフレームワークについても学びました。 まず、「日本語を正しく使う」ことに関しては、以下の点を意識しました。主語と述語がつながっているか、隠れた主語がないか、主語が途中で変わっていないか、一文が長すぎないか(60文字程度が適切)を確認しました。 文章評価の視点とは? 次に、「文章を評価する」際には、言いたいことを支える理由がどのような視点で行われているかを考えました。状況や相手によって最適な理由づけが異なるため、複数の理由を考慮した上で、適切なものを選ぶことが重要であると学びました。 手順を踏んで書く秘訣 「手順を踏んで書く」ことについては、全体像を考えつつ骨組みを固めることが大切です。具体的には、「柱を立てる」「柱を支える要素を複数挙げる」「具体化する」「文章にする」というプロセスを踏みます。 ピラミッドストラクチャーの効果とは? ピラミッドストラクチャーについては、メインメッセージ(結論・主張)とキーメッセージ(根拠)で構成され、キーメッセージを深掘りすることです。この構造により、論理の妥当性をチェックしやすくなり、聞き手側が理解しやすい論理展開が可能になります。 例えば、プロジェクトの進捗状況や課題について上司に相談する際には、つらつらと説明するのではなく、結論と根拠を整理することで会話が効率的になり、的確なアドバイスが得られます。 また、ベンダー企業との構想策定や要件定義の場では、主張と根拠を整理することで、理解が促進され、すれ違いを減らし手戻りも少なくなります。 最後に、社内プレゼン用のパワポを作成する際は、ピラミッドストラクチャーを用いて主張と根拠を考慮しながら構成を練ることで、矛盾がなく分かりやすいスライドを作成することができます。 以上の内容を今週学びましたが、これを活用することで、より効果的なコミュニケーションができると感じました。

戦略思考入門

持続可能な競争優位性を実現するための秘訣

戦略思考の気付きは何か? 今週の戦略思考で一番気付かされた点は、差別化された状態をいかに維持し続けられるかという点です。あるひとつの時点で見れば、当然新製品を導入するタイミングは自社有利に働きますが、顧客課題を解決できるものであれば、競合も同様のサービスや商品を提供・追従してくる可能性が高まります。そうなると競争の均衡が生じ、価格競争に陥りやすくなります。 継続的な競争優位性はどう維持する? 継続的な競争優位性を維持していくためには、本当の意味での自社の強みを理解し、その強みを生かす必要があります。それが製造ノウハウや技術力であるか、優れた営業スキルを持った人材か、過去に権利化された特許かもしれません。自社に関しては当然一番情報にアクセスしやすい立場にあるので、その強みをしっかりと見極め、いかに競争優位性を維持できるかをデザインしていく必要があります。デザインの見直し頻度も含めて戦略立案・推進していきたいと考えます。 自社の歴史から学ぶ方法は? 自社の歴史を振り返り、競争優位性が保てている商品・サービスとその理由、および保てなくなってきた商品の理由をいくつかのサンプルをピックアップして分析・評価してみたいと思います。その結果、本当の意味での自社の強みを理解し、それを事業戦略立案や商品戦略策定の根拠として活用します。また、それによって関係部門の役員への説得材料としても活用したいと考えています。 来季経営戦略会議に向けた計画は? 11月に全社役員を含む来季経営戦略会議が予定されており、そこをひとつのマイルストーンとしています。そこで戦略方針の提案を行い、承認を得るための計画は以下の通りです。 8月~9月:情報収集・分析。特に最も情報が取りやすい自社で競争優位性を保てているものの分析・評価。各種フレームワークを用いた外部環境・内部環境分析の実施とまとめ、特許情報も含む。 10月:戦略提案内容について関係部門との内容擦り合わせ。 11月:経営戦略会議での提案。 この計画を実行し、持続可能な競争優位性の確立を目指します。

データ・アナリティクス入門

数字とグラフで見える成長

比較や仮説の意義に迫る? 本教材では、比較や仮説思考の重要性を改めて確認しました。大量のデータを扱う際、数字化しグラフなどで可視化することで、情報がより明確に把握できることが示されています。 代表値はどう選ぶ? 代表値として、単純平均、荷重平均、幾何平均、そして中央値が挙げられました。それぞれ、状況に応じた使い分けが必要です。たとえば、ばらつきが大きい場合や外れ値がある場合には中央値が適している一方、成長率などの変化割合を捉えるためには幾何平均が有効です。 標準偏差を理解する? また、データのばらつきを理解するためには、標準偏差が重要な指標となります。標準偏差は、平均値との差の二乗和の平均の平方根として計算され、数値が小さいと密集、大きいとばらつきがあることがわかります。正規分布の場合、平均値から標準偏差の2倍以内に約95%のデータが収まるという2SDルールも、実感としての起こりにくさの目安となります。 グラフの効果は何? まとめとして、代表値とばらつきを用いてデータの特性を把握し、グラフなどの可視化を利用すると、非常にわかりやすく情報を整理できることが強調されていました。具体例を用いた説明は非常に効果的で、内容が実践的に応用できる点も評価されます。 荷重平均の活用は? さらに、データ可視化の具体的な利点や、実際の場面で荷重平均をどのように活用するかについて、さらに考えを深める問いが提示されています。これにより、自らの分析手法を実践的に応用する視点が求められています。 実務でどう活かす? 最後に、実務への応用例として、メンバーの時間外労働の管理が取り上げられました。労働時間が所定の範囲内に収まるよう、グラフを用いて傾向を把握する方法や、外れ値がある場合に特定の商品のデータを除外して全体の傾向を見る手法が紹介されました。また、エクセルを活用して各メンバーの代表値やばらつきを算出し、分析の特性に応じた手法が使われているかを確認することで、より実践的なデータ分析支援に繋げる取り組みが示唆されています。

リーダーシップ・キャリアビジョン入門

聞く力が変える職場の未来

本音はどう引き出す? メンバーとの関係性やモチベーション向上のために必要なことが、少しずつ理解できてきたと感じます。ひとりひとりの本音を引き出すためには、まずコミュニケーションを重ね、相手の内面に寄り添う姿勢が大切だと思います。 実行結果を見直す? 実行と結果の振り返りにおいては、まずメンバーに執行責任の自覚を促し、過干渉にならないよう注意する必要があります。計画通りに業務が進み、成果が出ているかを確認するとともに、予期せぬ事態や大きな変化がないかを定期的に見直すことが求められます。万が一不測の事態が発生した場合は、状況の収拾を最優先し、その後、リーダー自身の見落としや構造的な問題を認識し、具体的な改善策を検討することが重要です。 フィードバックは適切? また、効果的なフィードバックを行うためには、メンバーが自己の業務過程と学びを言語化できるよう働きかけ、具体的な事実に基づいて評価することが必要です。良い点と改善すべき点の双方を明確に伝え、改善策は具体的な行動計画として示すことで、次の課題へと繋げることができると感じています。 動機の理解は十分? 加えて、モチベーションは人によって異なり、社会的・金銭的・自己実現といった様々な動機があります。理論的なフレームワークを活用しながら、各メンバーの内面にある動機を理解し、個々に合ったインセンティブを提供していくことが、全体のモチベーション向上につながると考えています。 1on1はどう進める? 会社から積極的な1on1ミーティングの実施を促されている中で、何を伝え、どのように話を進めるか悩んでいましたが、今回の学びを通じてまずは相手の話に耳を傾けることの重要性に気づきました。聞く姿勢を徹底することで、メンバーが自身の考えを整理し、賛同のもと業務を任せられる環境を整えたいと思います。今後は定期的な1on1や適時のフィードバックを通じて、相手の動機を素早く把握し、エンパワーメントの視点から振り返りと改善、そして次なる課題への取り組みを進めていくつもりです。

データ・アナリティクス入門

分析のアプローチで見えた新たな視点

分析とは何を指す? 分析とは「比較」のことを指します。現状を詳細に比較したり、物事を比較することで、解像度の高い理解や把握が得られます。 グラフや数値の算出方法を理解 今回の学習を通じて、具体的な分析アプローチとしてグラフや数値の算出方法について理解しました。データを算出する際には、代表的な数値(代表値)とデータの散らばり(分布)に分け、それぞれに具体的な手法が用いられます。代表値の例としては、単純平均、加重平均、幾何平均、中央値がありますが、特に幾何平均を用いた売り上げ予測の立て方が印象に残りました。また、分布の例としては2SDルールが紹介され、大枠の範囲を考慮した上で平均値を予想する方法が理解できました。 仕事における分析意識の向上をどう図る? ①分析のアプローチに対する仕事の意識 「分析 = プロセス × 視点 × アプローチ」という基本的な考え方を念頭に置き、これらに漏れがないように資料を作成したり、発言するといった意識を持ち続けます。 ②分析のアプローチに対する業務の行動 現状では単純平均を用いて比較することが多いですが、今後は分布やグラフを用いることで新たな気づきを得られるように努めます。 アプローチ方法をどう定着させる? ⓪分析全体の把握およびアプローチ方法の定着化 学習した「分析 = プロセス × 視点 × アプローチ」について、自分の言葉でまとめました。まずは用語や算出方法を含めて暗記し、アプローチ方法を定着させます。 SNS戦略での分析の改善策は? ①SNS戦略での分析の実施 現状では数値を取って把握することが主体で、十分な分析ができていません。今後は、定義に基づいた分析を実施し、比較が必要な場合には代表値や分布を用いて進めます。 データ分析の評価をどう行う? ②データ分析に関する評価 業務上、データから戦略や仮説を立てることが多いため、データに対して視点を持ったりアプローチを探したりすることで、新たな気づきを見つけ、それを共有します。

クリティカルシンキング入門

気づきから磨く表現力

主語と述語は合ってる? 普段、述語の使い方にあまり意識を向けてこなかったことに気づき、主語と述語の整合性を意識する必要性を実感しました。複数の文章で主語が異なると分かりづらくなるため、主語を揃える工夫を行い、最終的に文章全体の流れを整えるよう努めています。また、一文はできるだけ一行以内、長くても一行半以内にまとめるよう心掛けています。 意見の根拠は何? 文章の評価においては、意見を支える根拠をラベリングしながら、複数の理由を提示することが重要だと考えています。実行容易性や効用といった観点から根拠を示すことで、読者にとって分かりやすい資料や議論の構成に寄与すると感じています。 意見はどう組み立てる? 文章作成の手順としては、まず自分の意見を明確にし、その意見を支えるために横の広がりとして複数の理由を展開し、縦の具体性を加えるよう努めています。こうしたアプローチにより、伝えたい内容が論理的かつ具体的にまとまります。 ピラミッドの使い方は? さらに、ピラミッドストラクチャーの活用により、情報の整理と論理的な伝達を実現しようと取り組んでいます。この手法を用いることで、各要点が明確になり、全体の流れが整理されることを実感しています。 文章は正確に伝わる? また、メールやチャットでのやり取りが多い中で、文章作成時に主語と述語の整合性に十分留意してこなかった点を反省しています。今後は、相手に正確に伝わる文章を意識し、見直す習慣を取り入れていきたいと考えています。 意見の整理はできてる? ミーティングや資料作成の場面では、意見やアイデアの根拠をしっかりと整理することが有用だと実感しています。横の広がりと縦の具体化を意識することで、より明確な意見表現を目指す所存です。 書く習慣は身についてる? 最後に、文章を実際に書き出すこと、もしくは口に出して確認することの重要性を再認識しています。時間が限られている場合でも、こうした習慣がより効果的なコミュニケーションにつながると考え、日々改善に努めています。

戦略思考入門

振り返りから広がる戦略の世界

戦略の本質とは? マイケル・ポーターの戦略論では、他社と同じことを単に効率的に行うのではなく、他社とは異なる価値を提供することの重要性が説かれています。こうした視点は、企業が独自の強みを追求する際に大きな示唆となりました。 5フォース分析の意味は? 業界環境を分析するためのフレームワークとしては、まず5フォース分析が挙げられます。これは、既存の競合、新規参入の可能性、代替品の脅威、買い手の交渉力、供給者の交渉力という5つの要因を通して、業界の収益性や脅威を見極めるための有効な手法です。 SWOTとPESTは何? 次に、SWOT分析によって、内部環境の強みと弱み、そして外部環境の機会と脅威を整理することができます。この分析は、企業がどの方向に向かうべきか、またどのような課題を解決する必要があるかを明確にする上で役立ちました。同時に、PEST分析を通じて、政治・法規制、経済・市場の動向、社会・文化や人口動態、さらに技術革新といったマクロ環境を整然と把握できたのも大きな収穫です。 3CとVRIOの効果は? さらに、3C分析により、顧客、競合、自社の視点から戦略を考える機会となりました。これにより、どのような価値をどの顧客に届けるべきか、また競合との差別化をどのように図るかが明確になりました。加えて、VRIO分析では、自社のリソースが経済的な価値を生み出し、希少であり、模倣困難かどうか、そして組織として活かせるかを評価し、持続的な競争優位に結びつく条件を確認できました。 計画への応用はどう? 中期経営計画への応用についても考察を深めました。具体的には、まずPEST分析でマクロなトレンドを把握し、5フォース分析で業界の収益性や脅威を整理します。その後、SWOTやVRIOで内部環境を総合的に見直し、3C分析で市場視点を加えることで、戦略の方向性を検討していきます。そして、短期から長期にわたる数値目標や重点投資分野、改善分野を明示しながら、実行可能な戦略として中期経営計画に落とし込む方法が示されました。

データ・アナリティクス入門

挑む学び!仮説が広がる瞬間

課題と仮説の意義は? 今週は、課題設定と仮説構築の重要性について学び、サンプルデータを用いた実践を行いました。課題を具体的に明確化することで、その後の仮説の精度が向上することを実感しました。また、立てた仮説に固執せず、検証結果に応じて柔軟に視点を変えることの大切さにも気づかされました。仮説が立証されなかった場合には、別の原因を積極的に探る姿勢が求められます。 なぜ業務は偏る? 営業店の業務負荷にばらつきがある場合、単に「業務量が多い」という理由で負担が大きいと判断するのではなく、どの業務が集中しているのか、フローに非効率な点があるのか、人員配置に偏りがあるのかといった具体的な仮説を立てた上で、必要なデータを特定し検証することが重要です。仮説を基に、どのデータを取得し、どのようなグラフで可視化するかを事前に整理することで、分析の精度が高まります。たとえば、営業担当者ごとの業務時間の偏りを分析する際、移動時間の長さや業務の種類が要因となっているかを検証するために、ヒストグラムや散布図の活用が考えられます。 定量指標は何故大切? 課題設定の精度向上には、定量的な指標を明確にすることが不可欠です。業務負荷の偏りを評価する場合は、「1人あたりの業務処理件数」や「1件あたりの処理時間」を指標とし、営業成績の低迷については「訪問件数」や「折衝時間」、「成約率」を基に状況を把握します。現場の意見をヒアリングし、課題感を共有した上で、分析すべきデータを整理することで、的外れな分析を防ぐことができます。 現場の意見は鍵? また、仮説構築とデータ収集の精度を高めるためには、複数の仮説を立て、どの仮説が有力かを検証する手法が有効です。たとえば、「営業成績の低迷要因」として、訪問件数の不足、折衝時間の短さによる十分な説明ができていない、または高額商品の偏った営業活動といった仮説が考えられます。とりわけ、営業活動に関する領域知識が不足している状況では、現場からの意見を積極的に取り入れた仮説設定が必要だと感じました。

データ・アナリティクス入門

多角的視点で仮説を練り上げる重要性とは

仮説構築のポイントとは? 仮説を立てる際のポイントとして、以下の二点が重要であると学びました。 まず、複数の仮説を立て、そこから絞り込むことが大切です。最初から決め打ちにせず、他の可能性を探ることで幅広い視点を持つことができます。また、仮説同士に網羅性を持たせ、異なる切り口で考えることも必要です。具体的には、3Cや4Pなどのフレームワークを活用することで、多様な視点から仮説を構築することができます。 データ評価の重要性を理解する 次に、仮説を検証する際のデータ評価についてです。単に目の前の数字を比べるのではなく、平均値や割合など、どの指標を比較するかを慎重に選ぶことが重要です。データの取り扱いについても、自分に都合の良いデータだけを集めるのではなく、必要なデータを自ら取りに行く姿勢を持つことが求められます。これにより、仮説はより説得力のあるものとなります。 実証実験の成功をどうつなげる? 今週の学習では、「複数の仮説を立てる必要性」や「自分の都合の良いデータだけをとらない」といった点の重要性について改めて学ぶことができました。実証実験においては、これらのポイントが本来最も重要であるにもかかわらず、見落とされがちです。新規事業においては、実証実験の成功要因や失敗要因を特定し、次へと繋げるためにも、責任を持って仮説検証を行う必要があります。 目標達成のための仮説設定 私の担当フィールドでは、目標達成に向けたキーファクターを見定めるために、複数の仮説を自分なりに設定したいと考えています。具体的には、以下のステップを意識して進めていきたいと思います。 - 実証実験の検証目的を見直す(現地側と調整可能な範囲で行う) - 検証目的に沿って仮説を洗い出す(いくつかピックアップし、検証項目を絞る) - 実証実験の目標値を先方と合意する これらを進めるにあたり、今週の学習で特に印象に残った「複数の仮説を立てること」や「自分の都合の良いデータだけをとらない姿勢」を常に意識して実行していきたいと考えています。

デザイン思考入門

共感でひらくアイデアの扉

プロトタイプは何故有効? プロトタイプを作成することで、イメージがより具体化され、テストの段階で得られるフィードバックが非常に有益であると実感しました。性格や背景の異なる第三者に評価していただくことで、自分では気づかなかった改善点が明らかになり、製品やサービスのブラッシュアップに大いに役立つと感じました。 テストの流れはどう? また、テストのプロセスは、普段実施しているレビュー作業に似た面がありました。レビューでは、作成した提案書や設計書に対して指摘を受けつつ改善を重ねるため、限られた目的や範囲の中で行われる点が共通しています。一方、デザイン思考における「共感」「課題定義」「発想」「試作」「テスト」の各プロセスは、業務で何気なく行っている点とも重なっており、日常の仕事に応用できる部分が多いと改めて認識できました。 デザイン思考の柔軟性は? デザイン思考では、基本のプロセスの流れがあるものの、非線形に繰り返す柔軟性が大きな魅力だと感じました。議論が行き詰まってしまうリスクもありますが、「共感」や「協働」を重視することで、しっかりとコンセプトを捉え、効果的にアイデアを育てることが可能です。人間中心のアプローチやビジュアライズ・プロトタイピング、そして共感の連鎖といった視点が、より良い成果につながると理解しました。 多様な意見はどう? さらに、他の受講生が作成したプロトタイプを通じて、多様な背景を持つ人々の意外なアイデアに触れることができたのは、大変参考になりました。一人では気づけなかった発想が生まれ、異なる視点を取り入れてアイデアを育てることが、新たな解決策へとつながると実感しました。 新ビジネスは何故大切? 新たなビジネスプランを検討する際、リーダーシップやチームビルディング、経営戦略、マーケティングなど現実的な調整が必要となる中で、まずはアイデアの創出が何より重要であると再認識できました。デザイン思考で学んだ手法は、普段の業務においてもそのまま活用できる貴重なものだと感じています。

「評価」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right