マーケティング入門

顧客理解を深めるデプスインタビューの力

顧客ニーズは本当に? 実際の事例を通じて、顧客の真のニーズを理解することと、自社の強み・弱みを把握することの重要性を改めて学びました。私は日頃からマーケティングと営業に携わっており、顧客と直接会話することで彼らを理解しているつもりでいました。しかし、実際にはその理解が浅かったと感じています。デプスインタビューや行動観察などの手法を学び、これらを実践することで、顧客の本当のニーズをより明確に捉えていきたいと思います。また、自社の提供するプロダクトに関してはある程度の理解があるものの、内部資源の理解はまだ浅いと感じています。バリューチェーン分析などのフレームワークを活用し、自社の強みと弱みをバランスよく見直したいと思います。 理由はどう伝える? 顧客からの声を社内の開発担当にフィードバックする際には、単に求められた機能を伝えるだけでなく、その背後にある理由を深く掘り下げることで、顧客の本当のニーズを捉え、それを社内に還元していきたいです。そして、顧客の声を基に、どの機能を優先的に開発すべきかを提案する際には、単に要望の多さで決めるのではなく、自社の強みを活かし、マーケティングのコアとなるような魅力的な機能を提案していきたいと思います。 ペインはどう解消? プロダクトのプロモーションにおいても、単なる機能紹介にとどまらず、顧客が実際に困っていることやペインポイントをしっかりと理解した上で、それを解消するイメージを具体的に提案できるよう、ネーミングや訴求文を工夫していきたいです。 必要機能は何故? 営業の場面で顧客から機能の要望を受けた際には、なぜその機能が必要なのか、具体的にはどのような業務に困っているのかを深くヒアリングしたいと考えています。また、顧客の業務現場を訪れ、実際に困っているポイントを自ら見つける機会を積極的に作りたいと思います。 体制はどう評価? 自社の理解を深めるためには、プロダクトの機能だけでなく、開発から提供までの体制や内部資源を再評価し、バリューチェーン分析を活用して、内側からの視点の偏りを無くして強みを整理していきたいです。

リーダーシップ・キャリアビジョン入門

キャリア探求で見つけた自分らしさ

価値観をどう見直す? 実践演習を通じて、自分の仕事に対する価値観を見つめ直す機会となりました。特に「愛他性」「社会的交流性」「社会的評価」を重視していることに初めて気づくことができ、体系的に学ばなければ気づかなかったであろう自分自身の特性や、仕事に対する価値観が人それぞれであるという実感を得られた点は大きな学びだったと感じています。 キャリアの見極めは? 一方で、自分のキャリアアンカーを一つに絞るのは難しいと感じましたが、セルフイメージと向き合う中で、やっとのことで「特定専門分野・職能別コンピタンス」が自分にフィットするという結論に至りました。他の人にインタビューしてキャリアアンカーを確認するのはハードルが高いと感じるため、今後は課内の会議などで実践する機会を設けてみたいと思っています。 サバイバルの必要性は? また、キャリア・サバイバルは極めて重要なテーマだと感じました。創設から6年目を迎えた組織は、近年の人員増加や環境の変化、テクノロジーの進化などにより、仕事のやり方も大きく影響を受けています。そのため、組織全体としてキャリア・サバイバルを考える必要性が高いと実感しました。自分自身のキャリアアンカーを理解することは、課内のメンバーが自信を持って仕事に取り組むための基盤となるため、これをテーマに講義を実施し、アウトプットを通して知識を定着させていきたいと考えています。 来年度計画は? 加えて、来年度の組織のOSTおよび人員構成の最適化を検討する上でも、キャリア・サバイバルの視点は大いに役立つと感じました。今期中に取り組みを開始し、その成果を上長にレポートしながら、来年度の計画の素地としていく予定です。また、「キャリアアンカーとは?」という内容は、4月から5月頃に自組織向けの講義として実施し、新年度に向けて課内のメンバーが自身の仕事観を再確認し、意欲を高めるタイミングとして活用したいと考えています。さらに、キャリア・サバイバルに関しては、3段階のステップで取り組む計画であり、各ステップに1か月から3か月の目標を設定しながら進めていきたいと思います。

データ・アナリティクス入門

ロジックで広がる学びの扉

MECEの意味は? MECE(ミーシー)とは、Mutually Exclusive and Collectively Exhaustiveの頭文字をとった言葉で、情報を漏れなく、ダブりなく整理する考え方です。この考え方は、多角的な問題分析や意思決定の際に、体系的に物事を捉えるための基盤となります。 ロジックの本質は? ロジックツリーは、複雑な問題や課題を階層ごとに分解し、問題の本質を明確にするためのフレームワークです。原因分析や解決策の立案、さらには意思決定プロセスにおいて、整理された視点を提供し、効率的なアプローチをサポートしてくれます。また、英語では「A Logic Tree」と表現され、複雑な事象を小さく分解することで全体像を把握しやすくしてくれる役割を果たしています。 SNS目的は何? 具体的にSNSプロモーションの計画においてこの手法がどのように活用されるかというと、まず中心となる目的、例えばエンゲージメントの向上やサイトへの誘導、フォロワーの増加などを明確に設定します。次に、その目的を達成するための主要戦略を大きく整理します。ここでは、コンテンツの質と種類、ターゲットとなるユーザー層、投稿のタイミングや方法などの要素が検討されます。 戦略の具体策は? さらに、各戦略を具体的なアクションプランに落とし込みます。たとえば、コンテンツ戦略では掲載する投稿の形式(画像、動画、テキスト)やテーマ、投稿頻度などが挙げられ、ターゲット戦略では、狙う世代やコミュニティとの交流方法を明確にします。そして、配信戦略についても、投稿の最適な時間帯や利用するプラットフォーム、必要に応じた広告の活用法などを細分化して整理します。 効果はどう評価? 最終的に、実行に移した各施策の成果を週ごとや月ごとに評価し、反応の良いコンテンツを強化しながら戦略の見直しやアップデートを行うことで、効果的なプロモーション計画が完成します。こうしたプロセスを通じて、ロジックツリーはSNSプロモーションの行動計画をより具体的かつ体系的に策定するための強力なツールとなります。

マーケティング入門

ポジショニングで見つける学び

既存商品の強みは? 教材で紹介されたある企業の事例を通して、既存商品の強みを活かしながら新規顧客獲得を図る手法を学びました。具体的には、自社商品の特徴の中から2つの軸を設定し、その軸に基づいてポジショニングマップを作成することで、競合との差別化ポイントを明確にできる点が効果的であると感じました。また、「S(セグメンテーション)、T(ターゲティング)、P(ポジショニング)分析」のうち、SとTは受講前から理解しており、従来の業務でも活用してきたため、本講義でPの重要性を再認識できたことは大きな収穫です。 ペルソナの再評価は? これまでは、狙いたい層から逆算してペルソナを構築し、市場のセグメンテーション、ターゲティング、さらに広報施策へと展開する流れで進めていました。しかし、定期的なポジショニング分析を取り入れることで、ペルソナを再評価し、複数のペルソナやポジショニングマップを保有できることが分かりました。それぞれのターゲットに応じた訴求ポイントを明確にすることで、同一商品から多様な顧客の獲得につながる可能性があると考えています。 学生募集の戦略は? また、学生募集の広報活動における一例では、近年新設された学部を含む、さまざまな学部での募集戦略が検討されています。従来は、情報系志望者や理系学生をターゲットとし、WEB広告やDM施策を中心に実施していました。しかし、競合と比較した場合、自学における「少人数指導」や「統計学・経営系科目の充実」といった強みを活かすことで、理系や情報系に興味はあるものの理数科目に苦手意識を持つ文系学生にも響く広報が可能になると考えています。 競合校調査はどう? まずは、ポジショニングマップを作成するために丁寧な競合校調査を行い、その仮定を裏付けるデータを確認することが重要です。これが実現すれば、ターゲット別の媒体制作の提案がよりスムーズに進むと考えます。また、情報学部だけでなく、経営、国際、看護など他の学部においても同様に競合校調査を実施することで、自学全体のターゲット層をより広げていくことができると期待しています。

データ・アナリティクス入門

標準偏差と幾何平均が紡ぐ成長

どんな学びが印象的? 今回の学びで特に印象に残ったのは、「標準偏差」と「幾何平均」の2点です。 標準偏差の計算手順は? まず、標準偏差についてです。計算手順はまず平均を求め、その後、各データと平均の差を求め、差を2乗します。そして、2乗した値の平均(=分散)を算出し、その平方根を取ることで標準偏差が得られます。具体的な例では、データが3, 4, 5, 5, 8の場合、平均は5となり、各データとの差は2, 1, 0, 0, -3です。これらを2乗すると4, 1, 0, 0, 9となり、分散は2.8、標準偏差は√2.8 ≈ 1.673となります。また、Excelでは=STDEV.P(範囲)という関数を用いて計算できます。 幾何平均の計算方法は? 次に、幾何平均についてです。こちらは、最終値を初期値で割った値を計算し、期間に応じた累乗根(平方根や立方根など)を求めます。その値から1を引いたものが平均成長率となります。例として、初期値が100、最終値が209の場合、成長率合計は209 ÷ 100 = 2.09となります。2年間での成長率なので平方根を求めると√2.09 ≈ 1.45となり、1.45 - 1 = 0.45(45%)が幾何平均成長率となります。 中央値だけで評価すべき? これまでは中央値を代表値として重視してきましたが、今回の学びで、データのばらつきを示す標準偏差の重要性を改めて認識しました。例えば、AIモデルの予測精度の評価において、これまでは絶対誤差率の中央値だけを使っていましたが、標準偏差を加えることで信頼度をより的確に評価できると感じました。 AI評価はどう変わる? 実際、私が担当する不動産評価のAIモデルにおいても、最新のトレンドを反映するため定期的にアップデートを行っています。これまでは精度評価において中央値のみを用いていましたが、今回学んだ標準偏差を活用することで、モデルの精度のばらつきをより正確に把握できると理解しました。今後は、より正確な評価のために、標準偏差も加えた指標で測定していく予定です。

リーダーシップ・キャリアビジョン入門

実践で磨く信頼とリーダーシップ

講座の学びは何? これまでの講座で、リーダーシップやモチベーションマネジメントに関する各種理論を学びながら、AIを活用した実践演習にも取り組んできました。最終回のクロージングセミナーでは、学んだ知識をもとにロールプレイ練習を行い、大変有意義な学びとなりました。AIのフィードバックも参考になりましたが、実際に受講生同士がお互いにどのように声をかけ合うかを見て、自分の行動を振り返るきっかけとなりました。また、今後の面談で真似したいポイントを見つけることもできました。 信頼はどう育まれる? リーダーとフォロワーの関係は、何よりも信頼に基づいています。信頼がなければ、どのような行動も効果が半減し、せっかくの取り組みもメンバーのモチベーション低下につながってしまいます。 低迷の理由は何? これまでの自分を振り返ると、仕事にやりがいを感じながらも、上司の評価や指示に納得できず、モチベーションが下がる場面に何度も直面してきたことがありました。モチベーションマネジメントを学んだことで、その原因が整理でき、今後リーダーとしてメンバーと共に働く中で、以下の理論や考え方を思い出しながら、より良い関係の中で成果を追求するチーム作りを心がけたいと考えています。 ・マズローの欲求の五段階説 ・ハーズバーグの動機づけ・衛生理論 ・マネジリアルグリッド ・エンパワメント 仲間の動機は何? まずは、共に働くメンバーの動機やその根底にあるものを理解することを大切にしていきたいと思います。そのために、メンバーとの振り返りの時間を意識的に確保し、相手の話を根気強く聞くとともに、質問の質を高め、真意を引き出す努力を重ねたいです。理論の理解だけでは不十分であり、日々の実践と経験が不可欠だと実感しています。 振り返りの実践は何? そして、メンバーとの定期的な振り返りの機会を活用し、面談に向けた事前準備を丁寧に行うこと、面談後に改善点を洗い出して次回に生かすこと、前回の反省点を踏まえて面談を実行することを、今後の日々の業務に取り入れていきたいと考えています。

マーケティング入門

受講生が語る実践セグメント術

どうしてターゲットを絞る? すべての人のニーズに応えようとすると、変数が多くなり一時的な成功で終わるリスクがあるという考え方が印象に残りました。市場をセグメントし、ターゲットを絞ることで、限られた経営資源の中で持続可能な戦略が構築できる点に共感しました。 なぜ普及要件を評価? また、新しい商品やサービスがなぜ受け入れられるのかを判断するための視点として、比較優位、適合性、わかりやすさ、試用可能性、可視性という5つの普及要件を学んだことは非常に有益でした。これらの観点から考えると、名称やネーミングが市場で果たす役割が明確になり、戦略の整理に役立つと感じます。 なぜ階層別を選ぶ? 例えば、企業の研修では、すべての社員への実施が理想ですが、実際には経営資源の制約から優先順位をつけ、階層別研修として実施している現状があります。これは、あくまでも限られた資源の中で行う一つの工夫であり、他の層への研修が完全に不要と決めたわけではありません。優先順位の根拠そのものについても再考の余地があると感じています。 どう判断受講メリット? また、新たな研修企画を社員の視点から評価する場合、まずは日常業務や他の自己啓発と比べて明確なメリットがあるかという比較優位が重要です。次に、研修内容が既存の業務や生活に適合しているかどうか、そして、なぜこの研修を受講するのかが一目で分かるわかりやすさも欠かせません。さらに、ティザー動画などで疑似的に体感できる試用可能性や、受講実績が上司にわかることで研修が一種のステータスとして認識される可視性も、大切なチェックポイントとなります。 なぜ大規模企画? 私自身は、中堅層を対象とする大規模な研修企画に取り組んでいますが、数千人という規模をどのようにセグメントするかに悩んでいます。実際に人事データから得られる情報は年齢や部門程度で、実際の行動や特性、成績などの詳細なデータは把握できないため、最終的には各部門に人選を依頼する形になっています。この点についても、より効果的なセグメンテーションを実現できる方法を模索中です。

クリティカルシンキング入門

今週の学びを振り返って、見えてきた成果と課題とは?

日本語を正しく使うコツは? 今週学んだ内容は「日本語を正しく使う」「文章を評価する」「手順を踏んで書く」の3点であり、これに加えて「ピラミッドストラクチャー」という関連するフレームワークについても学びました。 まず、「日本語を正しく使う」ことに関しては、以下の点を意識しました。主語と述語がつながっているか、隠れた主語がないか、主語が途中で変わっていないか、一文が長すぎないか(60文字程度が適切)を確認しました。 文章評価の視点とは? 次に、「文章を評価する」際には、言いたいことを支える理由がどのような視点で行われているかを考えました。状況や相手によって最適な理由づけが異なるため、複数の理由を考慮した上で、適切なものを選ぶことが重要であると学びました。 手順を踏んで書く秘訣 「手順を踏んで書く」ことについては、全体像を考えつつ骨組みを固めることが大切です。具体的には、「柱を立てる」「柱を支える要素を複数挙げる」「具体化する」「文章にする」というプロセスを踏みます。 ピラミッドストラクチャーの効果とは? ピラミッドストラクチャーについては、メインメッセージ(結論・主張)とキーメッセージ(根拠)で構成され、キーメッセージを深掘りすることです。この構造により、論理の妥当性をチェックしやすくなり、聞き手側が理解しやすい論理展開が可能になります。 例えば、プロジェクトの進捗状況や課題について上司に相談する際には、つらつらと説明するのではなく、結論と根拠を整理することで会話が効率的になり、的確なアドバイスが得られます。 また、ベンダー企業との構想策定や要件定義の場では、主張と根拠を整理することで、理解が促進され、すれ違いを減らし手戻りも少なくなります。 最後に、社内プレゼン用のパワポを作成する際は、ピラミッドストラクチャーを用いて主張と根拠を考慮しながら構成を練ることで、矛盾がなく分かりやすいスライドを作成することができます。 以上の内容を今週学びましたが、これを活用することで、より効果的なコミュニケーションができると感じました。

戦略思考入門

持続可能な競争優位性を実現するための秘訣

戦略思考の気付きは何か? 今週の戦略思考で一番気付かされた点は、差別化された状態をいかに維持し続けられるかという点です。あるひとつの時点で見れば、当然新製品を導入するタイミングは自社有利に働きますが、顧客課題を解決できるものであれば、競合も同様のサービスや商品を提供・追従してくる可能性が高まります。そうなると競争の均衡が生じ、価格競争に陥りやすくなります。 継続的な競争優位性はどう維持する? 継続的な競争優位性を維持していくためには、本当の意味での自社の強みを理解し、その強みを生かす必要があります。それが製造ノウハウや技術力であるか、優れた営業スキルを持った人材か、過去に権利化された特許かもしれません。自社に関しては当然一番情報にアクセスしやすい立場にあるので、その強みをしっかりと見極め、いかに競争優位性を維持できるかをデザインしていく必要があります。デザインの見直し頻度も含めて戦略立案・推進していきたいと考えます。 自社の歴史から学ぶ方法は? 自社の歴史を振り返り、競争優位性が保てている商品・サービスとその理由、および保てなくなってきた商品の理由をいくつかのサンプルをピックアップして分析・評価してみたいと思います。その結果、本当の意味での自社の強みを理解し、それを事業戦略立案や商品戦略策定の根拠として活用します。また、それによって関係部門の役員への説得材料としても活用したいと考えています。 来季経営戦略会議に向けた計画は? 11月に全社役員を含む来季経営戦略会議が予定されており、そこをひとつのマイルストーンとしています。そこで戦略方針の提案を行い、承認を得るための計画は以下の通りです。 8月~9月:情報収集・分析。特に最も情報が取りやすい自社で競争優位性を保てているものの分析・評価。各種フレームワークを用いた外部環境・内部環境分析の実施とまとめ、特許情報も含む。 10月:戦略提案内容について関係部門との内容擦り合わせ。 11月:経営戦略会議での提案。 この計画を実行し、持続可能な競争優位性の確立を目指します。

リーダーシップ・キャリアビジョン入門

聞く力が変える職場の未来

本音はどう引き出す? メンバーとの関係性やモチベーション向上のために必要なことが、少しずつ理解できてきたと感じます。ひとりひとりの本音を引き出すためには、まずコミュニケーションを重ね、相手の内面に寄り添う姿勢が大切だと思います。 実行結果を見直す? 実行と結果の振り返りにおいては、まずメンバーに執行責任の自覚を促し、過干渉にならないよう注意する必要があります。計画通りに業務が進み、成果が出ているかを確認するとともに、予期せぬ事態や大きな変化がないかを定期的に見直すことが求められます。万が一不測の事態が発生した場合は、状況の収拾を最優先し、その後、リーダー自身の見落としや構造的な問題を認識し、具体的な改善策を検討することが重要です。 フィードバックは適切? また、効果的なフィードバックを行うためには、メンバーが自己の業務過程と学びを言語化できるよう働きかけ、具体的な事実に基づいて評価することが必要です。良い点と改善すべき点の双方を明確に伝え、改善策は具体的な行動計画として示すことで、次の課題へと繋げることができると感じています。 動機の理解は十分? 加えて、モチベーションは人によって異なり、社会的・金銭的・自己実現といった様々な動機があります。理論的なフレームワークを活用しながら、各メンバーの内面にある動機を理解し、個々に合ったインセンティブを提供していくことが、全体のモチベーション向上につながると考えています。 1on1はどう進める? 会社から積極的な1on1ミーティングの実施を促されている中で、何を伝え、どのように話を進めるか悩んでいましたが、今回の学びを通じてまずは相手の話に耳を傾けることの重要性に気づきました。聞く姿勢を徹底することで、メンバーが自身の考えを整理し、賛同のもと業務を任せられる環境を整えたいと思います。今後は定期的な1on1や適時のフィードバックを通じて、相手の動機を素早く把握し、エンパワーメントの視点から振り返りと改善、そして次なる課題への取り組みを進めていくつもりです。

データ・アナリティクス入門

数字とグラフで見える成長

比較や仮説の意義に迫る? 本教材では、比較や仮説思考の重要性を改めて確認しました。大量のデータを扱う際、数字化しグラフなどで可視化することで、情報がより明確に把握できることが示されています。 代表値はどう選ぶ? 代表値として、単純平均、荷重平均、幾何平均、そして中央値が挙げられました。それぞれ、状況に応じた使い分けが必要です。たとえば、ばらつきが大きい場合や外れ値がある場合には中央値が適している一方、成長率などの変化割合を捉えるためには幾何平均が有効です。 標準偏差を理解する? また、データのばらつきを理解するためには、標準偏差が重要な指標となります。標準偏差は、平均値との差の二乗和の平均の平方根として計算され、数値が小さいと密集、大きいとばらつきがあることがわかります。正規分布の場合、平均値から標準偏差の2倍以内に約95%のデータが収まるという2SDルールも、実感としての起こりにくさの目安となります。 グラフの効果は何? まとめとして、代表値とばらつきを用いてデータの特性を把握し、グラフなどの可視化を利用すると、非常にわかりやすく情報を整理できることが強調されていました。具体例を用いた説明は非常に効果的で、内容が実践的に応用できる点も評価されます。 荷重平均の活用は? さらに、データ可視化の具体的な利点や、実際の場面で荷重平均をどのように活用するかについて、さらに考えを深める問いが提示されています。これにより、自らの分析手法を実践的に応用する視点が求められています。 実務でどう活かす? 最後に、実務への応用例として、メンバーの時間外労働の管理が取り上げられました。労働時間が所定の範囲内に収まるよう、グラフを用いて傾向を把握する方法や、外れ値がある場合に特定の商品のデータを除外して全体の傾向を見る手法が紹介されました。また、エクセルを活用して各メンバーの代表値やばらつきを算出し、分析の特性に応じた手法が使われているかを確認することで、より実践的なデータ分析支援に繋げる取り組みが示唆されています。

データ・アナリティクス入門

分析のアプローチで見えた新たな視点

分析とは何を指す? 分析とは「比較」のことを指します。現状を詳細に比較したり、物事を比較することで、解像度の高い理解や把握が得られます。 グラフや数値の算出方法を理解 今回の学習を通じて、具体的な分析アプローチとしてグラフや数値の算出方法について理解しました。データを算出する際には、代表的な数値(代表値)とデータの散らばり(分布)に分け、それぞれに具体的な手法が用いられます。代表値の例としては、単純平均、加重平均、幾何平均、中央値がありますが、特に幾何平均を用いた売り上げ予測の立て方が印象に残りました。また、分布の例としては2SDルールが紹介され、大枠の範囲を考慮した上で平均値を予想する方法が理解できました。 仕事における分析意識の向上をどう図る? ①分析のアプローチに対する仕事の意識 「分析 = プロセス × 視点 × アプローチ」という基本的な考え方を念頭に置き、これらに漏れがないように資料を作成したり、発言するといった意識を持ち続けます。 ②分析のアプローチに対する業務の行動 現状では単純平均を用いて比較することが多いですが、今後は分布やグラフを用いることで新たな気づきを得られるように努めます。 アプローチ方法をどう定着させる? ⓪分析全体の把握およびアプローチ方法の定着化 学習した「分析 = プロセス × 視点 × アプローチ」について、自分の言葉でまとめました。まずは用語や算出方法を含めて暗記し、アプローチ方法を定着させます。 SNS戦略での分析の改善策は? ①SNS戦略での分析の実施 現状では数値を取って把握することが主体で、十分な分析ができていません。今後は、定義に基づいた分析を実施し、比較が必要な場合には代表値や分布を用いて進めます。 データ分析の評価をどう行う? ②データ分析に関する評価 業務上、データから戦略や仮説を立てることが多いため、データに対して視点を持ったりアプローチを探したりすることで、新たな気づきを見つけ、それを共有します。
AIコーチング導線バナー

「評価」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right