データ・アナリティクス入門

数値の裏に潜む学びのヒント

データ比較の基本は? データ分析は比較という原則に基づいており、数値同士の比較を通してデータの実態や分布を探る作業です。まず、データの中心に位置する代表値を把握し、その上でデータがどのように散らばっているかを確認することが基本となります。代表値としては、単純平均のほか、加重平均、幾何平均、中央値が用いられ、散らばりを評価するには標準偏差の算出が有効です。 業務で分布を確認すべき? 普段の業務においては、データの分布を確認する試みが十分になされていないと感じます。分布を求めるためには、まずデータを分類するための項目が必要です。そのため、データ加工を前提として目的を明確にしながら項目を選定することが重要です。分析の目的と加工という手段を意識して検討することが、成功のポイントだと実感しました。 算出方法をどう活かす? 今回紹介された算出方法を効果的に活用するためには、標準偏差の算出、ヒストグラムの作成、加重平均や幾何平均を使いこなすスキルが求められます。今後は、これらの技法を実践的な練習問題などで訓練し、習得していきたいと考えています。

戦略思考入門

営業マン100人の無駄を見直し、更なる成果を

無駄な行動を捨てるには? 戦略を立てる際には、現状の行動を冷静に見つめ直し、効率よく利益を上げるために「捨てる」部分が必要となることを肝に銘じ、無駄な行動をなくす必要があります。しかし、「捨てる」行動は勇気がいるため、冷静な分析と思い切りが求められます。 営業体制に改善の余地は? 私の勤務する支店には約100人の営業マンがおり、自由に営業活動を行っています。時には訪問先が重なることも多く、現状では競争の原理により営業力の勝る営業マンが成果を上げて評価される方式で、毎期の営業目標を達成しています。この状況が長年続いているため問題ないとされていますが、さらなる成長を目指すには、より効率的な戦略が必要だと感じています。そこで、再度各営業マンの行動を分析し、無駄を排除する試みをしたいと考えています。 現状把握と効率戦略の重要性 まずはクライアント数と実績、さらに全営業マンが費やす労働時間を整理して現状を把握する必要があります。その上で、より効率的な戦略を検討します。無駄が想定以上に明らかになる可能性が高いため、経営陣との議論を行いたいと思います。

リーダーシップ・キャリアビジョン入門

理論で紐解くやる気の秘密

どんな理論を学んだ? モチベーションとインセンティブの関係について、さまざまな理論を学ぶことができました。マズローの欲求5段階説やX理論・Y理論、動機付け・衛生理論といった基礎的な考え方を通して、考察の切り口が広がったと実感しています。 評価基準はどう変わる? また、モチベーションの高低やインセンティブとして感じる基準は、個々の価値観だけでなく、周囲の状況や環境によっても大きく変化することを再認識しました。常に変動するものとして捉え、その変化をより良いものに導く試みが成長に繋がると考えています。 納得感はどう得る? 新しい業務の指示に対して納得感を持って取り組めない場合もあるため、そうしたメンバーのモチベーションやインセンティブについて理解を深めることが大切だと感じました。まずは相手の考えに寄り添い、その視点を理解しようとする姿勢が、納得感の醸成に寄与すると思います。 視点の変化は何? 現時点で分かっているメンバーであっても、今回学んだフレームワークを活用し、異なる視点から検証することで新たな一面が見えてくることに期待しています。

リーダーシップ・キャリアビジョン入門

フィードバックで次へ進む

フィードバックはどう捉える? フィードバックを考える際、これまで自分が受けたフィードバックの場面を思い起こしながら、どのように伝えるべきかを具体的に想像することができました。たとえ評価が低かった場合でも、本人の苦労した点に寄り添い、ねぎらいの言葉をかけることや、自己評価を語ってもらうことが大切だと感じました。また、自分自身の至らなかった点も率直に伝え、具体的なエピソードを交えて今後の取り組みについて一緒に考える姿勢が重要であると学びました。 目標設定はどう進める? 今年は初めてメンバーに対する目標設定と評価を行う機会があり、これまでの講座で学んだ知識を活かして、メンバーの目標設定をサポートしています。今はそのプロセスの途中ですが、期末の評価までにじっくりと取り組む時間があります。 週次の1on1はどう活かす? そこで、まずは週次の1on1を活用し、週ごとにフィードバックを行う形を取ろうと考えています。一週間の中でうまくいった点や課題点をメンバーに語ってもらい、その内容をもとに目標達成に向けた具体的な行動について一緒に考えていく予定です。

データ・アナリティクス入門

データと仮説で納得の選択

正確なデータは? 実務では、正しいデータに基づく比較ができていないため、意思決定で迷うことが多いと実感しています。経験や定性評価のみに頼ると限界があり、説得力にも欠けるため、定量的なデータを用いて自分自身も相手も納得できる意思決定を行いたいと考えています。 データの扱いは? これからは、まだ扱ったことのないさまざまな種類のデータに触れる必要があると感じています。そのため、まずはデータに関する知見を深め、各データの特徴に合った加工方法やグラフの見せ方を学びたいと思います。 仮説の重要性は? また、分析のプロセスでは、目的だけでなく必要な項目やデータに対する仮説の設定が重要だと感じています。仮説を立てる力を養うためにも、多くのデータに目を通し、さまざまな角度からの切り口を見出すためのフレームワークを習得したいです。現在担当している店舗オペレーション改善においては、トライアル検証やローンチ後の結果分析が課題となっており、通常の切り口に加えて新たな視点からの比較を行い、分析結果をプランニングやプレゼンテーションに活かしていきたいと考えています。

データ・アナリティクス入門

実践で磨く仮説思考の秘訣

正しい仮説はどう作る? 仮説を正しく構築することで、検証マインドが高まり、ビジネスの精度向上につながります。そのため、適切な仮説を立てるスキルの習得が求められます。また、「what」「where」「why」「how」といった視点を意識することで、課題の把握や解決方法の糸口を見つけることが可能です。 販売分析の秘訣は? 日々の販売分析においても、仮説思考を取り入れるよう努めています。現場担当者が実務の中で肌感覚で感じている課題について、定量的・定性的な両面から評価し、チームとして合意のもとで進めることが重要です。 仮説は独立すべきか? また、仮説は一つに絞らず、対策や重要性、影響力を十分に考慮した上で、業務への反映が必要です。複数の可能性を見極めながら、最適な対策を検討していく姿勢が大切です。 改善プロセスは? 具体的なプロセスとしては、まず現場担当者が感じている課題を確認し、併せて実績数値などのデータを基に問題点を洗い出します。その上で、いくつかの仮説を立て、裏付けとなるデータや対策案を検討しながらプロセスの改善を進めています。

リーダーシップ・キャリアビジョン入門

リーダーの核を育む日々

リーダー像はどう変わる? Week1で記述した「ありたいリーダー像」を再確認したところ、記された内容自体は大きく変わっていないように感じます。しかし、学習を終えた今、どのような行動や考え方がリーダー像に近づくために必要かという基礎が固まった点で、大きな成長があったと感じています。以前より、影響の輪を自分から積極的に発信していく自信がつきました。 行動計画はどう描く? また、今後の具体的な行動として、「目標設定時の自分の納得感を高める」期間には、Plan発表の際に十分な時間を確保し、様々な角度から納得できるプロセスを探り、理由付けと数値目標を立てることに注力したいと思います。 振り返りは何を見る? さらに、「振り返りの時間を取る」ため、手持ちの仕事が完了したタイミングで、仕事の結果を数字で表現し、成功点と改善点の両方を検証する時間を設けます。 数値評価はどう進む? 具体的には、5月以降の期におけるPlan作成時に十分な時間を確保し、4月までに実施した業務についても振り返りを行い、具体的な数値で表現して評価してみる考えです。

クリティカルシンキング入門

振り返りで気づく「もう1人の自分」

感覚と経験の再評価は? 私は職業柄、論理的に考えているつもりでしたが、講義を通じて実際には感覚や経験に頼って判断していることが多いことに気づくことができました。この気づきを得られたことは良かったと思っています。また、「もう1人の自分でチェックする」という方法は、どの場面でも活用できると考えているので、これを常に意識しながら業務に取り組みたいと思います。 ITを活用した提案力をどう高める? ITを活用した顧客への提案や課題解決の方法でも、ロジックツリーやMECEといった手法は非常に有効だと感じました。これらを意識して取り組むことで、頭の中を整理するだけでなく、設計資料や提案資料を作成する際にも説得力を高められると思います。 問題解決力の向上の鍵は? 日々の業務では様々な問題が発生しますが、ロジックツリーを用いることで課題を全体的かつ階層的に把握し、本質的な課題を特定しようとしています。研修を通して、自分自身の制約や偏った考え方に気づかされたことを教訓に、視点・視座・視野を意識し、もう1人の自分で常にチェックすることを心がけたいです。

データ・アナリティクス入門

小さな疑問から大きな発見へ

何故課題意識は必要? 分析の目的や課題意識を明確にすることで、日常の業務だけでなく、普段目にする分析データについても「なぜ?」と考える習慣が身につきました。例えば、ニュース記事で医師不足が取り上げられる場合、その背後にある分析の意図や解決すべき課題を自分なりに考察するきっかけとなりました。 施策評価はどう? また、業務で複数の施策を企画・実行する中で、効果を評価するための分析が重要だと感じています。中長期的な戦略の実行に際し、連続性のある施策を実施するためにも、小さな施策のブラッシュアップを繰り返す必要があると考えています。たとえば、アプリへのログインプロセスを細かく分解し、特に初回ログイン率の向上に向けた分析を進めています。 情報取得は万全? さらに、戦略立案の段階から必要な情報やデータが適切に取得できているかを精査し、取得できていないデータにはタグ付けなどの対応を実施して、常に分析が可能な状態を作り上げています。同じ条件で定期的にログの確認やレポート作成を行う仕組みを整備することで、継続的な定点観測が可能になりました。

リーダーシップ・キャリアビジョン入門

リーダーシップの真髄とフィードバックの技

リーダー像はどう変わる? ライブ授業を通じて自身の目指すリーダー像を言葉にしたり、人と共有する経験を重ねることで、そのリーダー像が一層鮮明になりました。また、フィードバックを行うグループワークでは、フィードバックの難しさを実感しました。相手に与える印象や使用する言葉の選択は、結果を見て初めて判断できますが、その前にしっかりと考えることが大切だと感じています。 伝え方はどう工夫する? 私は定期的な部下との進捗確認の面談や半期の評価面談でフィードバックを行う機会があるため、相手のタイプを分析し、論理的に伝える内容や順序を考えて伝えることが重要だと考えています。これが実際に最も有効に活用できる場面だと思っています。 面談はどう活かす? 近日中に実際に進捗確認面談を予定しているため、その際にこれらの知見を活用したいと思います。特に、評価基準や期の初めに設定した目標を振り返りながら、それに対する進捗を確認し、話を進めることが必要です。また、相手が思考することを苦手とするタイプであることを念頭に置いて、打ち合わせを進めていきたいと考えています。

データ・アナリティクス入門

データ分析で成果を上げるコツは?

要因分析を効果的に進めるには? 要因分析の際には、プロセスを細かく分解して考えることが重要です。解決策を選ぶ際には、判断基準を設けることが必要で、例えばコストやスピードを基準に評価を行うと良いでしょう。 A/Bテストの活用法とは? 方法の効果を確かめる際には、A/Bテストという手法が有用です。A/Bテストでは、可能な限り条件を揃えて比較実験を行うことが大切です。要因分析時には、できるだけ細分化を行うことが求められます。すべての状況がわからない中でも、仮説を立てて細分化を試みると良いでしょう。 解決策選びの優先順位はどう決める? 解決策の選択においては、判断基準や優先順位を整理することが重要です。効率が良い方法やスピードを基準として評価することが望ましいです。報告資料を作成する際は、自分の中でステップを細分化して理解し、その上で優先順位を付けて表現することが大切です。 条件を揃えるポイントは? 判断基準は常に上司と擦り合わせながら進めるべきです。また、比較を行う際は、可能な限り条件を揃えることを意識すると良い結果が得られます。

デザイン思考入門

組織の常識を超えるデザイン思考

組織支援の新たな視点は? 自分の業務は法人向けのガバナンス支援や規制対応支援であり、製品開発とは距離があるため、一般ユーザーの視点や共感を求められることはほとんどありません。そのため、組織としての対応やあり方を重視する中で、あえてデザイン思考のアプローチを適用することで、予想外の効果が得られるのではないかと感じています。 組織論で何を学ぶ? また、自分の日々の業務は基本的に組織論に基づいており、直接的な個々への共感よりも、組織設計や評価を重視して行われています。このような出発点での業務が、たとえその良し悪しが直ちに判断材料とならなくとも、将来的に役に立つ知見となると改めて気付かされました。 ユーザー体験の真意は? さらに、デザイン思考の基礎であるユーザー体験や共感という概念にはなじみがあり、漠然とした理解はあったものの、実際に登山装備の製品開発における事例や、身近な企業がどのような努力をしているのかを調べ考察する過程で、自分の業務や企業との関連性を新たに感じるとともに、理解が深まり、想像力が強化されたと実感しています。

「評価」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right