データ・アナリティクス入門

問題を解決するための分析フレームワーク活用術

問題の絞り込み方法は? 問題の箇所を明確にするためには、まず分析対象を絞り、原因を考えやすくします。また根本的な原因の仮説を立てる際には、3C(市場、競合、自社)や4P(製品、価格、場所、プロモーション)のフレームワークを活用します。そして、仮説に基づいてデータを集めます。この過程では、必要なデータが何かを見極めることが重要です。 仮説構築の多様性は重要? 仮説は複数立てるべきで、決め打ちにしないよう注意します。また、異なる切り口で網羅的な仮説を立てることも大切です。データ収集は、自分で取りに行ったり、誰かに聞いたりして行います。また、比較のためのデータも集めます。さらに、反論を排除するためのデータを集めることも重要です。自分に都合の良い情報だけを集めるのではなく、説得力のある分析を目指します。 データ分析のポイントは? データを見る際には、意図を持って分析します。例えば、問題箇所を絞り込み、フレームワークを活用して根本的な原因の仮説を立てます。その際、異なる切り口から多角的に仮説を立てるよう心がけます。そして、データを集めて比較し、反論を排除するための情報まで踏み込んで確認します。この一連のステップを可視化し、習慣化することが重要です。 どのフレームワークが適切? 仮説を立てるためのフレームワークについては、自分の業務に適したものを探し、過去の事例から有効なフレームワークを検証します。反論を排除する情報を集めるためには、周りのメンバーの協力を得て壁打ちを行い、反論点を意識的に探るようにします。

戦略思考入門

フレームワークで広げる視野、新戦略発見!

どう学びを業務へ活かす? 今週の学習を通じて、順序立てて俯瞰的に考えることの重要性を再認識しました。3C、SWOT、バリューチェーンといったフレームワークについては知識としては持っているものの、実際の戦略立案の場面では、これらを反射的に反応するだけで、十分に活用できていないと感じています。例えば、3C分析においては顧客と自社の要素しか分析できておらず、その他の要素についてどのように分析すべきか答えられない状態にあることに気づきました。これを受け、学習を通じて各フレームワークがどのような場面でどのように活用できるのかを理解し、今後の業務に活かしていこうと考えています。 チームの展望はどう見る? 社内では次期の予算が固まりつつあり、私のチームのアクションプランを考える時期に来ています。しかし、これまでの視点は自チームの課題解決に偏りがちだったと反省しています。そこで、3CやSWOTを用いて、現在のチームの状況をより俯瞰的に把握していく方針に転換しました。 計画の具体策はどうする? アクションプランの策定に際しては、まず現状の順序立てた分析を行います。具体的には、3C分析を通じて、顧客、市場、業界、競合を明確に分けて分析します。現在、社内のコールセンターで働いていますが、顧客設定についてしっかりと考えきれていませんでした。そこで、顧客を営業社員全員と捉え、それに対する期待されるサービスを明確に定義することにしました。また、同業他社だけに囚われず、目指すゴールに向けて不可欠な競合企業を設定することとしました。

データ・アナリティクス入門

仮説とデータが照らす成功の道

データ収集の手法は何? まず、データの収集方法について整理します。既存のデータを確認する場合は、手持ちの情報や一般に公開されているデータ、あるいはパートナー企業が保有しているデータを活用します。一方で、新たにデータを集める手段としては、アンケート調査やインタビューが挙げられます。特にインタビューは、背景を丁寧に確認できる反面、拘束時間や費用がかかる点に注意が必要です。 仮説設定はどう考える? 次に、仮説について考えます。仮説とは、ある論点に対して立てる仮の答えや、まだ明確でない事項についての一時的な見解を指します。たとえば、ある事業の成功は難しいとする結論の仮説と、具体的な問題点を洗い出して解決策を検討する問題解決の仮説があります。結論の仮説は、計画やプロジェクトを始める際に初めに立て、それが思うように進まなかった場合に問題解決の仮説を用いることで軌道修正を行います。 仮説検証はどのように? また、仮説は検証マインドの向上や説得力を強める上で重要です。日常的に市場や競合などの状況証拠を集め、論理的に分析することで、より精度の高い仮説が立てられます。こうしたプロセスは、計画のスピードアップや行動の精度向上にも寄与します。 情報の言語化はなぜ大切? 最後に、普段から問題意識を持って状況を把握し、得た情報を具体的かつ明瞭に言語化することが大切です。興味を持った点にアンテナを張り、現象の背景を分析する習慣は、論理的な思考力とコミュニケーション能力の向上に役立ちます。

データ・アナリティクス入門

仮説構築で見つける問題解決の鍵

問題解決の基本は何? 問題解決において、What(何が問題か)、Where(どこに問題があるか)、Why(なぜそうなのか)、How(どのような解決策を取るか)の順で進めることが基本であると学びました。また、仮説の構築において、自身の考えの幅を広げるためのフレームワークとして、3C分析や4P分析が有効であることを知りました。 仮説立案のポイントは? 仮説を立てる際には、複数の仮説を立てることと仮説の網羅性が重要です。さらに、仮説には結論の仮説と問題解決の仮説があり、それぞれの問題に対して適切に使い分けることが大切だと理解しました。 フレームワークの活用法は? 特に自身の仕事において、仮説を立てる際のフレームワークが大変有用だと感じました。これまでは人員不足といった問題に対して自身の思いつきのみに頼り、解決策を立てていましたが、今後は3C分析や4P分析といったフレームワークを活用し、より網羅性のある仮説を立てられるようにしたいです。 人員不足問題にどう対応する? 具体的には、人員不足という問題に対して、どこに問題があり原因は何かを仮説を立てて探りたいと考えています。仮説を立てる際には3C分析を活用し、求職者側の視点、競合の動き、自社の問題(雇用条件、福利厚生など)から仮説を立ててみます。その結果、自社に問題があるとなれば、4P分析に進み、さらに深堀りして問題を特定し、具体的な対策を立てるようにしていきたいです。

マーケティング入門

顧客の心をつかむ学びの秘訣

自社の強みとは何? ヒット商品を生み出すためには、自社の強みを理解しそれを活かすことが大切です。全く異なる業種の商品を作ろうとするのは難しいため、競合に勝つためには自社の強みを活用した発想が求められます。 ニーズとウォンツは何が違う? また、顧客の欲求には「ニーズ」と「ウォンツ」の2種類があります。ニーズは顧客自身が欲しいと認識している、もしくは解決したいペインポイントに対してお金を払うという欲求です。一方のウォンツは、顧客自身が何を欲しているかを明確に認識しておらず、しかし新しいプロダクトやサービスの可能性がそこに眠っていることがあります。 ウォンツ発見のヒントはどこに? ウオンツを見つけ出すためには、カスタマージャーニーの研究が必要です。顧客が普段どのような生活をしているのか、どのようなペインポイントを抱えているのかを明らかにするために、生活密着型の調査や深掘りするインタビューが有効です。特にエンタメ業界では、視聴者がコンテンツを消費する理由に明確なニーズがあることは少なく、そのウォンツを探し当てることがヒットコンテンツを生み出す鍵となります。 視聴行動は何を示す? そのためには、視聴のパフォーマンスデータや視聴者の選択行動データを観察し、それがカスタマージャーニーにどう結びつくのかを検証することが重要です。視聴者がどのような刺激に反応してコンテンツを選択しているのかを探ることが、次のステップとなるでしょう。

マーケティング入門

伝え方に革命!差別化の極意

働き方と差別化は? 競合に気を取られがちになりやすい中で、差別化の大切さについて実感しました。それと同時に、自身の仕事のやり方を振り返る機会にもなり、誰に向けてどのように働くべきかを再考する気づきを得ました。また、イノベーションの普及要件についての学びも深く感じました。 顧客にどう響く? 「消費者が商品に抱く期待や購買意欲を高めるアプローチ」が鍵という堅い表現もありますが、「どのように伝え、どう魅せるか」と「顧客目線での考察」を組み合わせることが、より具体的な解決策となるという考えに納得しました。 どう伝えれば納得? 現在、バックオフィス業務に従事しており、最近は会計業務も担当するようになりました。これまでの単なる数値管理や報告に留まらず、「いかに分かりやすく、相手に納得してもらえる形で情報を届けるか」を、順序やストーリーを意識して実践するように心がけています。 どう改善すべき? 既存の業務に向き合いながら、業務改善提案の伝え方については以下の点を意識しています。 まず【比較優位】として、現行業務との違いを一覧表にまとめ、わかりやすく整理すること。次に【適合性】を考え、現場が無理なく導入できるステップを明確化し、フォーマット化しています。そして【試用可能性】として、一定期間の試験導入を行い、その結果をフィードバックするトライアル運用も取り入れるようにしています。

マーケティング入門

「選択と集中で勝つ!ニーズ分析の極意」

セグメンテーションの重要性とは? 印象に残ったのは、セグメンテーションとターゲティングの部分でした。最初の講義でも触れた「誰に売るか?」という基本概念に通じますが、自分たちの魅力を一方的に押し付けるだけでなく、自分たちの強みを理解しつつ、どの人々にニーズがあるのかをしっかりと切り分ける必要があると感じました。不特定多数の顧客が市場に存在し、資源が限られている状況での「選択と集中」というフレーズが特に印象的でした。さらに、売り込む際には伝えたいことを2つに絞ることが重要で、その中で競合との差別化を図ることが大切だと学びました。 限られた資源でどう選択と集中を? この学びは、組織内での課題解決や顧客ニーズに応えるための企画立案に活用できると感じました。現在、資源が限られている中で顧客ニーズに極力応えていく必要があります。しかし、現状では選択と集中が十分できていないため、誰にどんな商品を提供するのが効果的で、そのためにどのように人的リソースや資源を投資するか考えることが重要だと考えています。 新たな思考法で提案をどう改善? 現在、多くの業務がBPOに近い形で進んでおり、複数の顧客ニーズに応えることが求められています。そこで、ニーズの重心を把握し、商品自体を変更することができない状況でも、新たな思考法を活かして、提案を文書や資料に反映し、効果的な提案ができるように努めていきたいと思います。

データ・アナリティクス入門

仮説が拓くわたしの挑戦記

仮説の基本は何? 仮説とは、ある論点に対して一時的な答えを示すものであり、結論の仮説や問題解決の仮説など、さまざまな形で用いられます。この仮説を立てることで、検証マインドや関心・問題意識が向上し、行動のスピードや精度も高まるという効用があります。 データで示す理由は? また、仮説はそれ自体の正しさをデータで示す必要があり、その方法が非常に重要となります。データにより正しいことが証明されるとともに、他の説が否定される仕組みが求められます。良い仮説を構築するには、フレームワークの活用も有効であり、フィールドワークやエスノグラフィーといった手法が、質の高い仮説作成に寄与するという意見もあります。 仮説思考はどう役立つ? さらに、仮説思考は課題や目標の検討にも役立ちます。次年度の事業目標や事業拡大のために、自分なりの課題設定を行う際、また顧客ニーズの変化や新市場を捉える際に、仮説を立ててアイデアを具体化することが求められます。 来年度の目標設定はどう? 来年度の目標設定においては、売上などの事業指標だけでなく、競合との比較や自社への影響を示す独自のインデックスを仮説として設定することが推奨されます。その仮説がどのような状態になれば「影響がある」と判断できるのか、ほかの指数と照らし合わせながら検証し、実際にデータを収集して売上や実感との整合性を確かめることが大切だと感じました。

データ・アナリティクス入門

問題解決の新たな視点を得る学びの旅

解決へのプロセスをどう進めるか? 今回の講義を通じて、問題解決における「What、Where、Why、How」の各要素に分けて進めることの重要性を再認識しました。特に、平均値を見る際に「ばらつき」という視点が抜け落ちやすいことに気づけたことは大きな収穫です。ばらつきを確認することで、新たな気づきや次の問いに繋がることがあるため、これを自身の思考の癖として意識的に取り入れていきたいと思います。 データ分析はどう活用すべき? また、データ分析の活用については、会社業績の分析に役立てていきたいと考えています。各要素をもとにして思考を整理し、比較をギャップとして描き出す際には視覚的にグラフも活用します。さらに、考えの幅を広げるためのフレームワーク(3C・4P)を、幅を広げるだけでなく、様々な場面で応用できるように意識して使うことで、新たな気づきや問いにも繋げていきたいと思います。 比較分析はどのように進化する? 自身の役割としては、バックオフィス化を進めることに加え、会社業績の分析資料の作りこみも進めています。Q2の考えを柱として、基本的な比較においても、前期・前月比以外に施設間比較や競合の数値を集めての比較、さらに売上の分解(ロジックツリー)なども行い、自社のマーケティング施策の検討に繋げていきたいと考えています。

データ・アナリティクス入門

仮説が拓くアイデアの軌跡

結論仮説の根拠は? 仮説には「結論の仮説」と「問題解決の仮説(What/Where/Why/How)」があることを理解しました。結論の仮説に求められるフレームワークは多岐にわたると感じ、例えば4Pや3Cといった手法もその一例であると捉えました。ミュージックスクールの事例からは、結論の仮説を明確に導き出すプロセスが示されていたと理解しています。 データ収集の意図は? また、これまで目の前や世の中にある既存のデータを活用して分析する習慣がありましたが、今回新たにアンケートなどでデータを収集する視点も得ることができました。今後は、どちらの仮説を導くのか、結論の仮説か問題解決の仮説かを意識することから始めていこうと考えています。 結論強化はどうする? 直近では問題解決の仮説を考える機会は多かったものの、結論の仮説を出す場面が少なかったため、あえてフレームワークを意識して結論の仮説を構築する取り組みを強化したいと思います。 事例から何を学ぶ? 企画の提案に際しては、過去のデータのみから示唆を得るのではなく、競合や他社の事例などもフレームワークを活用し、結論の仮説を導き出せるよう努めます。まずは3C分析を意識して活用し、自社だけでなく市場や競合の動向も幅広くインプットすることを目指しています。

データ・アナリティクス入門

仮説×分析で開く解決の扉

仮説立案の基本は? 仮説には、結論に至る仮説と問題解決に焦点を当てた仮説の二種類があり、問題解決の仮説では「What(問題は何か)」「Where(どこに問題があるか)」「Why(なぜ問題が発生しているのか)」「How(どうすべきか)」の順序で検証することが基本と学びました。 フレームワークは効く? また、仮説を立てる際には、3C分析(市場・顧客、競合、自社)や4P分析(製品、価格、場所、プロモーション)といったフレームワークの活用が有効で、これにより具体的かつ詳細な仮説を構築しやすくなると理解しています。 効果検証はどう? 現在、交通系ICカードで決済するとポイントが10倍になるキャンペーンの効果検証に取り組んでおり、決済回数や決済金額の増加などを評価指標としています。この分析に際しては、問題解決の仮説を立て、3C分析や4P分析を積極的に取り入れることで、データ分析の精度を向上させることを目指しています。 分析精度を上げるには? 所属部署では専門のデータ分析担当者がおらず、これまで独学で自己流に分析を行ってきました。今回学んだ仮説の立て方やフレームワークをさらに活用し、数値の取り方や検証方法を体系的に整理することで、分析の精度を一層高めたいと考えています。

データ・アナリティクス入門

市場を読み解く!成功する仮説の立て方と活用法

3Cと4Pの学び方は? 3C(市場・顧客・競合・自社)と自社を細かく検討するためのフレームワークである4P(製品・価格・場所・プロモーション)の関係について学びました。これにより、市場分析がより具体的かつ体系的に行えるようになります。 仮説を複数立てる意義とは? また、仮説の立て方についても学びました。仮説は一つではなく、複数立てることでその有用性が証明されやすくなります。仮説には問題解決のための仮説と結論の仮説があり、それぞれの役割が明確です。 新卒市場での戦略は? 例えば、新卒市場での人材獲得では、採用実績校と定着性を数値化し、学校訪問や求人活動を行うことで、技術系就職担当教授やキャリアセンターの職員に対する認知と共感を得る可能性が向上します。これにより、相関関係が期待できる重点対象校へのアプローチが効果的になります。 中国・四国エリアでの具体的な活動 具体的には、中国・四国エリアの国立高専(香川、阿南、新居浜、高知、呉、宇部、米子、松江、津山)を対象に、卒業生名簿と直近3~5年間の実績データをもとに学校訪問を行います。特に、内々定者がいる学校には個別情報を対面で提示し、認知と共感を高めるよう働きかけることが重要です。

「競合 × 解決」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right