データ・アナリティクス入門

どのデータを集めるかが未来を決める

比較の重要性を再考する 分析の本質は比較であることを学びました。これまで、比較対象の選定や要素の統一が不十分だったため、正確な分析ができていなかったと感じます。特に、生存者バイアスがかかってしまうことが多かったことを反省しています。 実証実験で得る結果は? 新規事業を創出する部門に所属しているため、秋から行う実証実験ではデータの適切な分析と比較対象の正確な選定を心掛け、意味のある結果を得たいと考えています。また、取得したいデータの設計も行い、目的に合った実証実験を行いたいと思います。 適切なデータ設計とは? 実証実験の目的を再確認し、成功と見なされるために必要な情報を考えます。どのようなデータを取得すればよいかを設計し、それを企画に反映させます。分析の本質は比較にあることを常に念頭に置き、適切な比較対象を設定することを意識して進めていきたいです。

データ・アナリティクス入門

受講生が実感する学びの変革

目標はどう意味づけ? 目標設定は、データ分析のみならず、学び全般にとっても非常に重要だと再認識しました。受講前に描いていた理想像よりも、学びを終えた今の自分は実践できることが増え、単なる分析のプロから、ビジネス現場で分析手法を効果的に活用するプロへと成長できたと感じます。 活かし方はどうして? この学びは、日常のあらゆる業務に活かしていきたいと思います。データ分析の知見が、問題解決や新たな施策の立案に大いに役立つと理解したため、業務全体でその手法を意識していくつもりです。 従来手法は適切? また、現在の担当業務を見直すことで、従来の方法が本当に適切であったのか、見逃している課題はなかったのかを改めて点検していこうと考えています。その結果を踏まえ、今回の受講で得た実体験の知見を活かし、今後必要となる知識やスキルの習得にも取り組んでいきたいです。

データ・アナリティクス入門

比較と仮説でつくる現場改善の秘訣

目的と仮説の効果は? 今回学んだ「目的を持った比較や仮説に基づく分析」は、土木現場における工期短縮、コスト管理、安全対策の見直しに大いに役立つと感じています。たとえば、過去の類似現場と比較して資材使用量や作業時間に差が見られた場合、その背景を詳しく分析することで無駄や非効率を特定し、具体的な改善策を立てることが可能です。 記録と検証の効果は? まずは、各現場の作業時間、コスト、事故件数などのデータを日常的に記録・整理し、月単位で過去の現場と比較する習慣を身につけたいと考えています。特に大きな差が見られる項目については、「なぜこのような結果になったのか?」という仮説を立て、関係者と意見を交わしながら原因を徹底的に究明し、改善策を現場に反映させていきます。小さな気づきも見逃さず、分析を日常業務に取り入れていくことを意識して行動していきたいと思います。

データ・アナリティクス入門

数値で見抜く!漏れゼロの採用戦略

どの段階で離脱? ファネル分析を通して、どの段階で対象が離脱しているかを可視化できるため、問題点を明確に捉えることができると感じました。ただ単に結果を眺めるのではなく、途中段階で状況を確認し、各プロセスを適切に設定することが重要だと思います。 採用選定のポイントは? また、採用活動においては、採用エージェントや採用プラットフォームの選定に活用できる点が印象的でした。まず、人材会社のユーザー数、直近3カ月以内のアクティブ数、採用職種の登録人数、採用希望年代など、段階的に絞り込むことで、対象となる母数の大きさを把握する手法が有効だと感じました。 母数比較で選定は? さらに、それぞれの採用エージェントやプラットフォームを運営する企業ごとに同様の絞り込みを行い、母数を比較することで、採用活動に最も適した人材会社を選択できると実感しました。

データ・アナリティクス入門

見せ方で広がる学びの世界

数値の見せ方はどう? データの加工によって結果から導かれる解釈が変わる点に非常に興味を持ちました。たとえば、平均や中央値、グラフの種類といった数値の見せ方によって、分析結果の印象が大きく変わることを実感しています。一方で、これらは作成者の意図が反映されている可能性もあるため、単一の数値だけでなく、複数のデータを総合して考察する必要があると学びました。加えて、加重平均、幾何平均、標準偏差など、値の求め方の違いを明確に理解し、使いこなせるようになりたいと感じました。 アラートの傾向はどう? また、これまでに発生したアラートの種類や頻度をまとめ、発生パターンを分析・予測できるのではないかとも考えています。どのタイミングでアラートが発生するかといった傾向を把握することで、対策の立案がしやすくなり、結果としてアラートの抑止につながると期待できます。

データ・アナリティクス入門

数字を味方にする学びの第一歩

数字の意味は? 数字自体は難解なものではなく、まずは苦手意識を払拭することが第一歩だと感じています。分析という行為は、なぜそのような結果になったのか、どのポイントからその結論に至ったのかを明快に説明し、他者を説得するための有力な材料になるからです。 どのように慣れる? そのため、初めは身近な数字に触れ、慣れ親しむことが大切だと考えています。次第にビッグデータを扱いながら、実践的な分析スキルを磨き、根拠となる資料を用いた分析を行っていきたいと思います。誰が見ても理解しやすく、納得できる説明ができるように心がけることが目標です。 偏らず分析するには? また、捉える数字を正確に把握するためには、一面的な見方に偏らず、あらゆる角度から分析する姿勢が重要だと実感しています。これにより、より具体的で説得力のある分析が実現できると信じています。

データ・アナリティクス入門

仮説と視点で未来を創る

仮説とフレームワークはどう使う? 今週の学習では、仮説を立てる際に、4Pや3C分析といったフレームワークを活用し、多角的な視点で課題にアプローチする方法を学びました。目的に応じて、結論に関する仮説と、問題解決に向けた仮説に分け、時間軸に沿った内容の整理が可能になることを理解しました。正しいフレームワークの適用は、仕事に対する検証マインドを向上させ、アウトプットの説得力を高め、行動の精度とスピードの向上にもつながると感じました。 問題点はどのように見える? また、プロジェクトの進行状況が順調に見える場合でも、現状の分析結果から問題点を把握し、将来的にどのような課題が発生する可能性があるかを立ち止まって検討することの重要性を再認識しました。都度このような振り返りの時間を設けることで、継続的な改善とリスクの早期発見が期待できると実感しました。

データ・アナリティクス入門

フレームワークで拓く学びの扉

基本の振り返りは? 今週は、前回と同様に基本的な考え方をベースにした振り返り学習が印象的でした。特に、3Cや4Pの視点から仮説を立て、問題の定義を明確にする流れを重視する点が印象に残りました。 フレームワークの意義は? 授業では、課題解決のためにはフレームワークを活用し、定量的な情報に基づいた分析が重要であることを再認識しました。日々変化する業務の中で、分析活動が新たな気づきに繋がると感じました。認知バイアスや慣習により問題点に気づけなかったり、正しく認識できない場合もあるため、フレームワークによる抜け漏れのない仮説検証が課題解決に不可欠だと考えています。 課題の見直しは? また、今週の課題に関して、P4におけるアンケート結果や初級・中級クラスの充足度を踏まえ、どのような課題が存在するかを検討することが大切だと感じました。

データ・アナリティクス入門

仮説から見える実践の道

目的は何でしょうか? まず、分析に着手する前に、目的意識を強く持つことが重要だと感じています。どのようなデータを用い、どのような加工を施して活用するのかを熟考することで、分析の精度が高まると思います。 仮説設定の秘訣は? 次に、仮説を立てることが分析の出発点であり、実際の数値や製造指標を軸にポイントを絞り込むことが有効です。数字を単に羅列するだけではなく、各項目の重要度や意味を十分に考慮したうえで比較分析を行うことが大切です。 分析結果はどう活かす? また、これらの分析は、次の四半期の実績検討に向けた具体的な資料となり得るため、単なるデータの把握に留まらず、実践的なアウトカムにつなげていく必要があります。日常業務においても、データの活用状況を見直し、改善のヒントとする取り組みが求められていると実感しています。

クリティカルシンキング入門

多角的視点が拓く不動産分析

多角分析はなぜ? 多角的な分析により、経験則だけに頼らず、実績をもとにした判断の材料を活用する重要性を再認識しました。単一のデータ表に頼るのではなく、異なる角度から作成した複数のデータ表を活用することで、より精度の高い分析が可能になると考えています。 エリア事例の違いは? また、エリアごとに不動産売買の成約事例はさまざまであり、各エリアの成約事例―例えば利回りや金額、融資利用か現金購入かといった要素―の分析には、賃料相場、土地の成約事例、路線価、謄本からの融資金額や融資金利、不動産専用サイトに掲載された情報など、多岐にわたるデータを参考にしていました。 分類で新発見は? これらの情報をエリア別、築年数別、構造別に分類して分析することで、従来の方法では見つけにくかった新たな発見や結果が明らかになるのではないかと感じました。

クリティカルシンキング入門

多角的視点で紐解く真実

検証方法はどうなってる? 本質的な原因を追求するためには、データや数字を多面的にチェックし、単なる仮説だけでなく異なる視点から検証することの重要性を学びました。また、検証結果を確認する際に、一度立ち止まって漏れや重複がないかどうかを確認する習慣を身につけることが大切だと実感しました。 事業分析の見直しは? 新規取引先の事業分析では、売上、コスト、資金繰りなどを漏れなくダブりなく把握するために、MECEの考え方を用いて各要素を分解し、どの部分が収益性に影響を与えているかを明確にしていきたいと考えています。また、特定の仮説一辺倒にならずに複数の観点から原因を検証することを心掛け、資料作成やプレゼンテーションの場面においても、具体的に物事を分解し、なぜ返済方法が期限一括となるのかなどの理由をしっかりと説明できるよう努めたいと思います。

データ・アナリティクス入門

平均の壁を超える新たな挑戦

分析プロセスとは? 「分析のプロセス」について、まず目的を明確にし、仮説を立て、次にデータを収集し、最後にその仮説を検証するという一連の流れが紹介されました。代表値として、単純平均、加重平均、幾何平均、中央値が挙げられており、各手法を用いることでデータの中心をどこに置くかを判断します。一方、標準偏差を用いた散らばりの分析は、データがどのように分布しているかを把握する上で不可欠だと理解しました。 手法選びはどう? 実務では、これまで単純平均を頻繁に使用していましたが、その結果としてデータのばらつきを捉えられず、正確な分析が難しいと感じていました。今回の学びを通じて、加重平均や中央値など、状況に応じた手法の選択と活用が重要であることに気づきました。今後は、各手法の特性を考慮しながらデータ分析に取り組んでいく所存です。

「分析 × 結果」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right