クリティカルシンキング入門

分解と工夫で見える新たな発見

なぜ分解して把握する? 物事を分解して状況の解像度を上げることの重要性を学びました。特にデータ分析の視点から、①加工の仕方、②分け方の工夫、③分解時の留意点という3つのポイントに着目して学習を進めました。 加工手法ってどう? まず、データ加工については、意味合いを分かりやすくするために基準を設け、グラフ化する手法に注目しました。与えられた票をそのまま見るのではなく、自ら欄を追加して全体を俯瞰することで、絶対値や比率などの数値から隠れた傾向を明確にする―いわゆる「可視化」が鍵となります。 どう分けると良い? 次に、データの分け方の工夫では、手元のデータをもとに状況を捉えるため、単に機械的な10刻みで区切るのではなく、試行錯誤を繰り返しながら意味のある切り口を見つけ出すことの大切さを実感しました。場合によっては、元のデータに立ち返って再検証する方法も有効です。 分解の注意点は? また、実際に分解する際は、When(いつ)、Who(誰が)、How(どのように)の観点を持って整理し、自分自身に本当にそうかと問いながら、複数の切り口から検証していく姿勢が求められると理解しました。こうした実践を通じ、たとえ一度で完璧な結果が得られなくとも、傾向が見えてくること自体に大きな価値があると感じます。 分析結果をどう活かす? これらを踏まえ、まずは自分の部門での最近の取り組みを題材に、発生件数や予測される件数、台数などを定量的に観測し、事象の強弱からリスクの高低を分類する(いわばクラスタリングする)というアイデアが浮かびました。加工方法や分類の工夫は、実践経験を重ねる中で深まるものだと考えていますし、他にも有効なアプローチがあれば議論を通じて共有できればと思います.

クリティカルシンキング入門

問い続けた日々の気づき

自問自答する意味は? クリティカルシンキングでは、知識を実務に活かすための思考力を磨くことが重視されています。瞬発力と持久力を合わせ持つ必要があり、自分の考えには必ず偏りが生じ、無意識のうちに制約を設けてしまうため、常に自問自答する姿勢が求められます。 思考の幅を広げる秘訣は? また、視点、視座、視野という3つのアプローチを通じて思考の幅を広げることが重要だと学びました。頭の中でロジックツリーを効果的に活用し、MECEの原則に基づいて情報を整理する方法も実践しました。帰納と演繹を用いることで、抽象的な概念と具体的な事例を行き来するトレーニングが、主観から客観へとシフトするきっかけとなります。 動画学習の問いかけは? さらに、動画学習では3つの基本姿勢が紹介されました。常に目的を意識すること、誰にでも思考のクセが存在するという前提を持つこと、そして絶えず問い続けることです。「だから何?」「なぜ?」「本当に?」と自分に問いかけ、思考を言語化し、経験を教訓へと変えるプロセスが、基礎となるコミュニケーション力と問題解決力を養うと理解しました。 論理表現をどう磨くか? 実践面では、経営会議でのプレゼンテーションや、上司との議論、部門・部下への意見のブレークダウンの際に、瞬発力と持久力を兼ね備えた論理的な表現が求められています。そのため、日々、自分の考えに偏りがあることを認識し、自己批判の視点を持って反復トレーニングに取り組む必要性を感じています。 仲間と意見交換は? しかし、持久力や論理展開力を瞬発的に実践する感覚や、成長を実感する体験は、まだ十分に得られていません。この点について、同じ課題に取り組む仲間たちと意見交換ができればと考えています。

データ・アナリティクス入門

共通認識が導く納得の意思決定

なぜ納得できない? これまでのGAiLでは、解説を読むたびに納得感を得られる部分が多かったのですが、今週はどうしても納得できない点がありました。設問3のデザイン変更の方法案について、解説では「コスト」「スピード」「意思疎通」に点数を付け、その結果として最適なものは「案3」とされていました。しかし、私が認識していた各指標の点数が異なっていたため、別の案を回答してしまいました。 共通認識は必要? この経験から、意思決定支援を行う際には、分析結果に基づいて「How」を考える前提として、共通認識(認知の歪みがない状態)を持つことが非常に重要だと感じました。たとえ分析結果から具体的な手法が導かれたとしても、共通認識が欠けていれば相手に納得感を与えるのは難しく、実際の実行段階で問題が生じる可能性があります。そうした意味で、仮説をしっかりと研ぎ澄ますことが大切だと理解しました。 A/Bテストはどう見る? A/Bテストについては、ダイレクトリクルーティングにおけるスカウト送付の場面で有用と考えています。たとえば、①スカウトメールの件名、②本文、③添付の求人票といった要素で比較検証を行う方法が挙げられます。一方で、各グループ間の介入の違いはできるだけ絞る必要があるため、比較対象が不必要に増えないよう、明確な仮説に基づいて取り組むことが求められます。 どう候補者を絞る? また、ほとんどの場合、データサイエンティストという職種名で求人票が作成され、スカウトメールが送付されているため、まずは候補者を①データサイエンティストとしての経験の有無と、②データサイエンティストを希望しているかどうかの2点で分類し、返信率への影響を検証していきたいと考えています。

リーダーシップ・キャリアビジョン入門

リーダーシップは誰にでもできる挑戦

リーダーシップを誰でも発揮できる? リーダーシップは特別な能力ではなく、地位や役職に関係なく誰でも発揮できるものです。リーダーシップというと組織のトップや一番優れた人を思い浮かべるかもしれませんが、必ずしもそうではありません。 日頃の積み重ねが重要? リーダーシップを発揮するためには、日頃から「当たり前のこと」をきちんと積み重ねていくことが重要です。例えば、業務を依頼する際には、具体的に何をどのくらい、いつまでにやるのかを明確に伝え、共通の理解を得ることが大切です。また、その仕事の背景や目的を説明し、全体像を伝えることによって、メンバーが仕事の意味を理解しやすくします。さらに、メンバーの経験や能力を確認し、それに応じたフォロー体制を整えることで、サポートしやすい環境を作りましょう。 目指すリーダー像とは? リーダーとして目指す姿をイメージし、日々の行動に落とし込むことも重要です。リーダーシップの要素は行動、能力、意識に分けられます。リーダーは目に見える行動で評価され、行動は能力と意識の掛け算で成り立つため、それぞれを高める努力が求められます。業務指示においては、丁寧な対応を心がけ、相手任せにせず、相手のモチベーション向上に努めます。面談やミーティングの場でも、相手に伝える力、引き出す力、動かす力が重要です。 人材育成におけるリーダーシップは? また、リーダーシップは人材育成の場面でも発揮されます。メンバーへの働きかけは立場に関係なく「それ、いいね」「やったね」「ありがとう」といった声掛けを心がけ、忙しさを理由にしないよう努めましょう。相談しやすい環境を整えるためには、笑顔での対応や声をかけられた際に手を止め相手に向き合う姿勢が大切です。

データ・アナリティクス入門

仮説から挑む数字の物語

仮説はどこから来る? 分析の基本は、まずさまざまなデータを比較することにあります。細かなデータやグラフを確認する前に、自分なりの仮説を立てることが大切だと感じました。 3つの軸は何が違う? ここでは「プロセス」「視点」「アプローチ」という3つの軸が重要です。プロセスでは、目的を明確にし、仮説を立て、データを収集して、その仮説を分析により検証します。視点については、インパクト、ギャップ、トレンド、ばらつき、パターンなどに着目します。そしてアプローチとして、グラフや数字、数式を活用する方法が挙げられます。 可視化で何が分かる? 比較のための可視化には、数字に集約する方法、目で見て把握できるようグラフ化する方法、さらには数式にまとめる方法があり、状況に応じて適切な手法を選ぶことが効果的です。 代表値はどう見る? また、データを見やすくするためには「代表値」と「分布」を確認することがポイントです。代表値には単純平均、加重平均、幾何平均、中央値などがあり、ばらつきを把握するには標準偏差が有用です。特に、95%のデータが含まれるという2SDルールは、分析の信頼性を判断する際に役立ちます。 ノーム値は意味ある? クライアントのノーム値を算出して、予算シュミレーションに活用する手法も魅力的です。さらに、業界ごとにどの枠が効果的か比較検証することで、より適切なアプローチを模索することが可能だと思います。 実数値で検証できる? 実際のデータを利用してノーム値を算出する試みは、非常に価値があると感じます。社内にある関連データの算出方法や分析手法を参考にしながら、実数値での検証を進めることで、より実践的な知見が得られるでしょう。

戦略思考入門

ビジネスを制するメカニズムの極意

今週は何を学んだ? 今週の学びについて、以下のように感じました。 ビジネスはゲームか? まず、資本主義社会におけるビジネスは一種の「ゲーム」であり、そこで戦うためには「ルール」である「メカニズム」を学ぶことが重要です。どんな戦略も基本的な原理原則から外れていては意味がないため、このメカニズムを理解することが大切です。例えば、星野リゾートの星野社長が教科書通りの経営を重視されていることにその点が表れています。 変化に対応するには? 次に、時代やビジネス環境の変化によりメカニズムも変わるため、これに対応できる姿勢が求められます。「守」「破」「離」という取り組み姿勢やマインドセットが重要であり、自分で手を動かして試すこと、自ら調べ分析することも必要です。データや街を歩いて集めた情報を把握し、時代や環境変化を考慮し、指数関数的な急激な変化に対応することが競争の基盤となります。 基本をどう生かす? また、過去の知識を有効に活用することが重要です。業務に取り組む際、小難しい手法に飛びつくのではなく、まずは基本を大切にし、先人の知恵に基づいて基本を理解してから行動すべきです。 スピード重視の理由は? スピードを意識することも大切です。「スピードこそが競争のベースになる」と学びました。「スピード感」を持つことが業務改善に役立ちますが、その速度が何のために必要なのかという本質を見失わず、変化に対応しPDCAを回すために用いるべきです。 実践で何を得る? 最後に、自分で手を動かし経験を積むこと、規模の経済性と習熟効果の観点で業務を分析することが今回学んだ重要なポイントです。これらのメカニズムをしっかり理解し、戦略を立てることが求められると思います。

戦略思考入門

フレームワークで視野を広げる学びの旅

差別化の学びは何? 差別化を考える際に特に印象に残った学びを紹介します。 フレームワークは何で? まず、フレームワークを用いることの重要性を挙げます。マクロからミクロまでの広い視野で細かく分析するには、フレームワークが欠かせません。フレームワークを使用することで、見落としを防ぎ、思考のバイアスを取り除き、新たな気づきを得ることができます。 顧客視点はどう? 次に、顧客視点で考えることの重要性です。競合が行っていないことに目を向けがちですが、顧客が喜ぶような差別化をしなければ成功しません。顧客のニーズを何度も考え抜く粘り強さが必要です。 模倣防止は可能? さらに、他社に模倣されない施策を講じることが求められます。すぐに模倣されてしまう施策は、あっという間にコモディティ化してしまい意味がありません。自社独自かつ模倣が困難で、長期的な継続が可能な施策を打ち出すことが重要です。 過去とどう向き合う? バックオフィスにおいては、競合との差別化ではなく、自分たちの過去との差別化を考える必要があります。業務効率や業務品質、過去のクレームなどを分析して課題や実績を洗い出します。顧客から直接ニーズを得たり、現状のリソースから実現可能な施策を考えたりします。そして、その実現に向け、皆で話し合いながら意思決定を行い、実施内容を検討します。集合知の活用が鍵となります。 実践はどう進める? 具体的な実践例としては、業務上フレームワークを使う機会が少ない場合でも、適切な場面では必ずフレームワークを活用し、自己の視座を広げる努力をします。また、同じ部署の仲間を競合と捉え、自分にしかできないことで自身を差別化することも一つの方法です。

戦略思考入門

真似されず輝く自社の魅力

講座受講の本当の意味は? 今回の講座を受講する理由は、経営戦略の学びが自身の業務にも深く関係している点です。特に、顧客にとって価値があり、選ばれるための差別化が重要な視点だと感じています。 差別化の本質は何? これまで「差別化をしたい、考えたい」とよく思っていましたが、具体的に深掘りする方法が分からず、また「真似されるな」と主張していたものの、真似されるものはそもそも差別化とは呼べないと気付きました。加えて、差別化を実現するにあたり自社の強みを意識する中で、真似できないソフト面が今の組織の大きな強みであると認識し、これを大切にしていきたいと考えています。 VRIOを活かす秘訣は? また、VRIOの考え方が非常にわかりやすかったため、さっそく現業務に活用したいと思います。自分の事業内容の見直しの際に、特に情報配信やイベントでの差別化の方向性を模索していたため、学んだ内容が具体的なヒントとなります。さらに、女性対象に情報配信や起業家支援を行う事業でも、企画から実施、告知、集客に至る各段階で役立つと感じました。 集客はどう取り戻す? 近年、SNSの台頭などで仕事の依頼が減少し、売上が低下しているため、改めてフレームワークを活用し、独自のサービスを打ち出す必要性を感じています。そこで、まずスタッフミーティングで集客に関する概要を伝え、各自に「なぜ集客が必要か、どのような手段が考えられるか」を宿題として考えてもらいます。 実践後に何を考える? その後、スタッフ全員で実際のワークを行い、まとめた内容を可視化して、とりあえず実践に移します。実践した後は反省点を振り返り、改善に努める予定です。具体的なテーマとしては、夏休みイベントを取り上げています。

リーダーシップ・キャリアビジョン入門

自分に余裕、対話で花咲く

エンパワメントの真意は? エンパワメントのコツについて学びました。まず、自分自身が余裕を持って取り組むことと、相手をよく理解することが重要であると感じました。ただし、すべての仕事にエンパワメントが通用するわけではなく、手に余る仕事や不確実性が高い業務、そして一度の失敗が許されない仕事には注意が必要です。 目標設定の工夫は? また、目標設定の場面では、相手に自ら考えさせ、その意見を引き出す方法が大切だと学びました。その際、相手が「分からなくて」やる気がないのか、「できなくて」やる気がないのか、あるいは最初から「やりたくない」のかを見極めることがポイントです。もし相手が困惑して「やりたくない」と感じている場合は、やる気が湧くような伝え方を工夫し、意味を分かりやすく伝える必要があります。 余裕の大切さは? 私が一番心に響いたのは、「自分自身に余裕をもって」という考えです。余裕がある状態では、相手の話をゆっくりと聞くことができ、たとえピント外れの回答であっても受け入れて、適切にアドバイスや補正を行えると感じました。一方で、余裕がない場合には感情的になりやすいため、対話に臨む前に自分自身の状態を見極めることが大事だと思いました。 目標と組織はどう連携? 今後、目標設定の際には、相手の話をよりよく聞くように努めます。そして、自分で判断するのではなく、相手に「分からないのか、できないのか、やる気がないのか」を考えさせるように意識します。さらに、相手の目標と組織の目標を結びつけ、広い視野でやる気を促すために、6W1Hを意識した定量化ができる目標設定を行い、フォローアップの頻度も増やしながら、寄り添う姿勢で接していきたいと思います。

データ・アナリティクス入門

統計で読み解く学びの軌跡

代表値の意味は何? データを理解するためには、代表値と散らばりに注目することが大切だと学びました。代表値については、これまで単純平均や中央値が中心だと思っていましたが、加重平均(重みづけを行う)や幾何平均(売上成長率の計算などに用いる)もあることを知りました。 散らばりの特徴は? また、データの散らばりを把握するためには標準偏差が有効です。標準偏差の値が大きいほどデータのばらつきが大きいことが示され、散らばりをグラフにすると中央が高い釣り鐘型になるのが一般的です。大部分の値は標準偏差の2倍以内に収まるとされ、これを2SDルールと呼びます。この考え方は、日本人男性の平均身長とそのばらつきを求める具体例で非常に分かりやすかったです。 業務で活かすポイントは? 業務面では、意識調査で入社年次のデータが取得できた際に、標準偏差を使ってデータのばらつきを確認してみたいと考えています。社内教育の理解度確認にも、標準偏差が有用であると思いました。 他部署での応用は? さらに、別部署で実施している顧客アンケートの分析においても、今回学んだ知識が応用できそうです。たとえば、寄せられた意見をカテゴライズして、売上に応じた加重平均を算出することで優先すべき意見を抽出できると感じました。また、幾何平均を用いることで、翌年度の予測も立てられるのではないかと考えています。 今後の展開はどう? 今後、6月末に予定している社内教育のアンケート分析では、理解度の散らばりを明らかにするために標準偏差を調べるつもりです。そして、業務分担の変更が見込まれる中で、顧客アンケートの分析にも加重平均や幾何平均を活用し、前年度データとの比較検証を行う予定です。

デザイン思考入門

デザイン思考で顧客価値を最大化する方法

デザイン思考をどう活かす? デザイン思考には、共感、課題設定、発想、試作、テストのステップがあり、これを非線形に繰り返すことが重要だと学びました。この思考をビジネスに活かすためには、顧客やユーザーの行動を観察し、彼らの体験価値を最大化することが大切です。最近学んだカスタマージャーニーでも、ペルソナを細かく設定することが、サービスやプロダクト、戦略を考える上で重要だとされており、これがデザイン思考と通じると感じました。 学びを深めるステップは? 学びにおいて大切なこととして、1.言語化、2.教訓化、3.自分化が挙げられ、これが特に印象に残りました。私は考えを言葉にするのが苦手なので、まず書いてみて、次に発言し、さらに伝わりやすくするステップを踏んでいければ良いと思っています。 システム開発の目的を再確認 現在、私は営業系のシステムを開発・管理・運用する部署に所属しており、社内の営業部門がメインの顧客です。これまで、ITやシステムに慣れていないユーザーをターゲットに、使いやすさを重視した設計を行ってきました。しかし、講義を通じて、システム開発の本来の目的は効率化や売上向上を図ることにあると考え直しました。ターゲット設定を見直し、本来の目的達成のための設計をもっと重視すべきかもしれないと感じました。 顧客理解に基づく設計とは? システム開発においては、インターフェイスの使いやすさに過度に拘らず、データの意味を可視化し、顧客理解や戦略策定を実現するための設計に焦点を当てる必要があります。既存のシステムについても、ユーザー目線でその利用価値を最大化できるかを考え、ユーザーからのフィードバックを積極的に取り入れる姿勢が大切です。

データ・アナリティクス入門

4つの視点が導く成功のカギ

講義で何を学んだ? 今回の講義では、課題の把握と改善プロセスについて学び、問題を「何が(What)」「どこで(Where)」「なぜ(Why)」「どのように(How)」の4つの視点から捉える重要性を再認識しました。特にA/Bテストを通じて、異なる施策を比較検証することで、効果的なマーケティング戦略を導き出す手法を理解できたことが印象的でした。また、仮説を立てた上でデータを収集し、検証と改善を繰り返す思考サイクルにより、日常に即したデータ分析力を鍛えることができたと実感しています。 チームでどう連携? また、チーム全体で納得感を持って課題に取り組むためには、課題解決のステップを着実に踏むことが不可欠であると感じました。例えば、アンケート結果から要望を読み取る際には、根拠となるデータを明確に示すことが効果的であるという点や、研修の理解度チェック問題で正答率が低かった場合には、単に理解不足と結論付けるのではなく、解答プロセスを丁寧に分解して検討する重要性についても触れています。各要因を切り分けて検討することで、真の原因を見出すことが可能となると理解しました。 多角検証の意味は? 「What」「Where」「Why」「How」のステップを意識することで、問題解決に向けた思考がより整理され、課題特定時の統一感を保つことが大切だと気づかされました。仮説立案においては、一面的な見方に偏らず、多角的なアプローチで検証する方法の有効性を実感し、検証段階では先入観にとらわれず、検証したい点以外の条件もしっかりと統一されているかを確認する重要性を学びました。これらの学びを今後の業務に活かし、より深く課題に向き合っていきたいと考えています。

「意味」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right