データ・アナリティクス入門

仮説とデータで描く地方創生のヒント

仮説の見方は? ビジネスにおける仮説思考について、まず複数の仮説を同時に考え、それぞれに網羅性を持たせることが重要だと学びました。仮説を検証するためには、適切なデータを取得して比較する必要があり、その際には何を比較指標とするのかを意図的に選ぶことが求められます。たとえば、残業時間の増加要因として故障対応の増加が疑われる場合、単に故障件数だけでなく、1件あたりの対応時間も合わせて評価することが必要です。 情報収集の意図は? また、データ収集では意味のある対象から意見を聴取し、反論を排除するために必要な情報まで踏み込むことが重要です。さらに、実際のビジネス現場では、3Cや4Pといった分析の枠組みを活用して具体的な仮説を立てることで、解像度が高まり、個々の仕事に対する検証マインドや説得力が向上するほか、ビジネスのスピードや行動の制度が改善されることが分かりました。 過疎地域の課題は? 一方、過疎地域への移住促進においては、雇用の創出が鍵となります。人口が5000人以下の市町村では、産業の集積が不十分なため、相応の所得を得られる雇用を生み出すには、行政が主導して仕事づくりを進める必要があります。こうした雇用創出の一策として、総務省が制度化した仕組みがありますが、現状では本県で十分な成果が上がっていません。 事業展開のヒントは? この原因を明らかにするために、どのような業務に何人派遣しているか、また仕事の切り出し方についてデータを収集し、市町村担当者と情報を共有することが今後の事業展開のヒントになると感じました。現在、管内の1市町村で既に事業が展開されており、協力体制の可能性を検討しています。また、他の市町村でも類似の事業設立が検討されているため、たとえば損益分岐点を意識した事業計画の作成方法をケーススタディとして示し、過疎地域の課題解決につなげる取り組みを進めたいと考えています。

データ・アナリティクス入門

分析で見つけた新たな発見と気づき

比較による効果測定とは? 分析とは、比較することである。まず、分析する項目を整理し、各要素の性質や構造をはっきりさせることが重要だ。何かの効果を測りたい場合、「ある」場合と「ない」場合で比較を行い、分析対象以外の条件も整える必要がある(これは「Apple to Apple」と呼ばれる)。 データ分析の目的と仮説 データ分析を行う際には、まず目的と仮説を立てる。例えば、データ分析の目的は何で、その結果どのような状態を目指すのかを明確にすること。そして、どの項目を分析すれば目的を果たせるのか、その項目をどのようにデータ加工すれば良いのかを考え、具体的な仮説を立てることが大切だ。 適切なデータ加工と表現法 データにはその種類に応じた加工法やグラフの見せ方が必要である。割合で表現するのが適切な場合と、実数(本来の値)で表現するのが適切な場合がある。また、質的データ(数値の大小に意味がないもの)と量的データ(数値に意味があるもの)の違いを見極める必要がある。 人事部門のデータ活用法 人事部門では、健康経営やエンゲージメントに関するデータを扱い、改善に向けた施策を企画することが多い。このため、データを活用して課題解決や目標達成のためのPDCAサイクルを効果的に回せるようにすることが求められる。これまでの施策参加者がどれだけ改善したか、「参加した人の中で●●をした人はより■■だった」といった分析を行うが、このためには、参加者と不参加者の間での比較を行うことが重要だと感じている。 目的設定と議論の重要性 まずは、目的を明確にし、自分自身の思い込みや仮説に偏らず、上司やメンバーと徹底的に議論することが必要だ。次に、課題に対して目指す姿を定量的にKPIとして設定し、現状を把握する。算出するデータに定義と根拠を持ち、それを分かりやすく伝えるスキルを身に付けることも重要である。

データ・アナリティクス入門

条件を揃えて見える学びの真実

正しい比較はどうする? 「Apple to Apple」という考え方が印象に残っています。同じ条件に揃えて比較しなければ、意味がなく、データを正しく読み解くために非常に重要だと感じました。頭では理解していても、経験やクリティカルシンキングが不足していると、ついつい情報を鵜呑みにしてしまう危険性があります。 企画と集客の関係は? 私は学生向けのオンラインイベントの企画と集客を担当しています。まず、企画と集客は表裏一体であり、学生の行動分析が重要です。具体的には、どの時期にどのような申込行動があるのか、参加後にはどのような行動に繋がっているのかを解析し、その結果をもとに企画の対象、開催時期、内容を決定しています。 認知広げる秘策は? さらに、集客においては「いつ、何を、どのように」告知して認知を広げ、申込を促し、開催前に離脱を防ぐ対策まで考えなければなりません。状況が常に変化する中で、申込状況をリアルタイムに把握し、必要な打ち手の変更を迅速に行うことが求められます。企画の効果が集客に影響するため、両者は密接に連携させる必要があります。 データ整備は進んでる? 現状では、まずデータの整備が最優先事項です。折り返し地点まで進めていますが、依然として地道な作業が続いています。正直なところ、「会社が整えておくべきだ」という愚痴も出るほどですが、しっかりと整備を進めなければ本質的な分析はできません。今後も引き続き取り組んでいきます。 管理方法はどうなってる? また、データの記録や管理、分析を効果的に行うためには、エクセルフォーマットの整備も欠かせません。どのようにすれば見やすく、管理しやすく、分析しやすいかを、部署メンバーと意見を合わせながら調整を進めています。この作業は地道ですが、本質的なデータ分析の議論に繋がっているため、継続して進めていく覚悟です。

クリティカルシンキング入門

踏み込むデータ、広がる発見の世界

データと本気で向き合う? データの用い方や見せ方について再確認でき、また新たな発見を得ることができました。従来は説得力や妥当性を高めるためにデータを利用してきましたが、今回の講習では「データとの向き合い方」自体に踏み込むことで、さらに可能性が広がると感じました。踏み込むというのは、データを分解・分析し新たな発見につなげることを意味します。これまでは、一定の目的が達成できればそれ以上深堀りしなかった自分を反省し、今後は偏りを減らしてより深く分析することで、発見の数や他者への探求の深さ、そして説得力の向上につなげたいと思います。単に表面的な理解で終わるのではなく、データから何が見えているのかを追求していく姿勢が大切だと感じました。 業務で分析は活きる? また、業務においては分類・分解・分析が多くの場面で役立つと実感しました。たとえば、目標設定では、市況や需要予測に基づいてシェアや販売量を設定し、その根拠となるデータや分析結果をもとに説明することで、計画の信頼性が高まります。実施計画においては、マーケティング戦略や営業活動の手段、ターゲット、期待できる効果、効果が現れるまでの時間などを細かく整理し、実行者、評価者、受益者それぞれとの連携を明確にすることが可能です。さらに、効果測定では、シェアや販売量・金額と実施計画との因果関係を明確にして、次のアクションの策定や判断につなげることができます。 分析手法を検討する? こうした業務プロセス全般において、データの分類・分解・分析は有効な手法です。具体的には、説明が必要な場面で、利用可能なデータや参考になる情報がないかを常に意識し、検討することが大切です。たとえば需要予測においては、単に過去の推移を見るだけでなく、季節要因や提供者ごとの特徴も踏まえて分析することで、より実効性のある判断が下せると感じました。

データ・アナリティクス入門

仮説力で見える未来のカタチ

仮説検討は効果的? フレームワークを使って仮説を検討する重要性を改めて実感しました。自分の視点だけで考えると、異なる仮説が実は同じ意味を持っていたり、抜け漏れや重複が生じ、MECE(漏れなく、ダブりなく)にならないことがあると感じました。また、業務では自社の既存データを中心に扱っており、外部のデータと比較する機会が少ない点にも気づきました。一般的なデータにも注意が必要で、信頼性が低かったり数値が大げさに見せられるケースもあるかもしれません。こうした状況だからこそ、学んでいる知識を活かし、有効なデータと信頼できる情報源を見極める必要があると思いました。 動画から何を学ぶ? 先週のグループワーク後に視聴した関連動画で紹介されたさまざまなグラフや分析手法も非常に参考になりました。自分がこれまでなんとなく実施していた方法が当てはまる部分もあれば、これまで注目していなかった視点に気付くこともあり、改めて復習する意欲が湧きました。 実務で新発見は? 実務では、指示通りに同じグラフを作成することが多い中、自分自身でフレームワークを活用して仮説を立て調査することで、新たな発見につながる可能性を感じています。現在の職場では、これまでにない未来的な取り組みが多く、自社の過去のデータだけでは捉えきれない視点が必要だと再認識しました。大きな歴史的流れに沿った視点も、今後の改善に大いに役立つと考えています。 改善策の検証は? まずは、フレームワークを用いて「どの部分が改善され、会社の売上に貢献できるか」という仮説を立て、データの収集と検証に取り組みたいと思います。また、データだけに頼らず、職場の改善点や取り組みについても多角的な視点を持って検証することで、会社全体の業績向上だけでなく、自分自身の成長につながる発見があると期待しています。

データ・アナリティクス入門

生の声で伝える挑戦日記

代表値と散らばりとは? 大量のデータを分析する際には、中心的な特徴を示す代表値と、データのばらつきを示す散らばりの両面からアプローチすることが重要です。代表値には、単純平均、加重平均、幾何平均、中央値があり、それぞれの特性を理解した上で適切に活用する必要があります。一方、データの散らばりを把握するためには標準偏差が用いられます。標準偏差とは、平均値から各データがどの程度乖離しているかを示すために、各乖離の二乗和をデータ数で割った値の平方根を意味します。 看護国家試験対策はどうする? 看護師国家試験対策では、4年生進級までの過去の成績を分析し、不得意な科目や分野を特定した上で重点的に補強する方法が提案されます。また、入学試験志願者の選抜においては、成績、出席日数、欠席理由、さらには高校卒業までの活動や志願理由を詳しく分析し、入学前教育に効果的に活かすことが期待されます。 早期支援の進め方は? さらに、早期からの継続的支援として、1年生前期の履修成績を把握した上で夏休み中に補習を実施し、後期終了後にも同様の取り組みを行うことが検討されています。これを各学年で実施することで、4年生にまとめて行う短期間の国家試験対策よりも、より効果的な成果が見込まれます。この取り組みは、大学の教務委員会や国家試験対策委員会に提案し、全教職員の協力のもと、実施体制と行動計画を整えることが前提となります。 書類評価の観点は? 加えて、現在提出される入学試験受験者の書類について、評価の見方や押さえるポイントを明確にすることが提案されています。これにより、入学制度に対するリアリティショックを軽減し、学力不足の傾向に対しても適切な対応策を講じることが可能になると期待されています。現時点では、入試広報部と連携してこの問題に取り組む方針が進められている状況です。

クリティカルシンキング入門

スライドで差をつける技術とは?

どう伝えるのが良い? 同じメッセージでも、スライドでの表現方法によって、内容が読まれるかどうかが大きく変わることを改めて感じました。伝えたいことが決まったら、文字の強調や色の使い方、適切なグラフの選択が重要です。特に強調表現(太字や斜線)や、文字の色使い(青=肯定的、赤=注意やネガティブ)を工夫し、誰が見ても違和感なく理解できるよう心がけるべきです。 何を見せれば正解? スライドを丁寧に作成することは、根拠となる情報を一目で理解させるために欠かせません。例えば、売上の60%以上を占めることを伝える際に売上構成比を見せないのは問題です。グラフを作成する際には、メッセージのどの部分を補強するのかを意識する必要があります。 本当に伝わってる? ビジネスライティングは経験があればできると思いがちですが、実際にはできていない人も多いです。自身のスキルを見直し、読まれるスライドを作ることを心がけたいと思います。クリティカルシンキングで検討した内容をスライドに適切に反映できないと意味がありません。ビジネスライティングとクリティカルシンキングは関連があり、重要です。 どう説明するの? 自身のプロジェクトを上長や他部署に説明する際、スライド作成が必要です。今回学んだことを活かし、メッセージと根拠が一致しているかを確認しながら、スライド作成に取り組みます。また、会社にあるスライドに関する指針と今回の学びを融合させることで、効果的なスライドを作成したいです。作成後は、学んだことと会社の指針の二つの視点でチェックを行います。 見た目は大丈夫? 文字の色や強調表現については日頃から意識しているため、スライド作成時には必ず実施し、最後に確認を行います。学んだポイントを反映したチェック表を作ることで、適切にチェックできるようにする考えです。

デザイン思考入門

発散と共鳴で生まれた革新

どんなデータで戦略化? 私の顧客は主に社内の営業担当で、取得できるかどうかに関わらず、どのようなデータがあればより戦略的な活動が実現できるかというアイデアを集めるブレーンストーミングが面白いと感じています。現状、データ提供側は、こうしたデータをもとに顧客の考えや行動を理解し、営業がその仮説に基づいた行動に移ることを前提としているため、実際のデータ活用にはつながっていないと考えています。そのため、単に可視化しているデータに対する意見収集にとどまらず、営業として必要なデータについても積極的に意見を集めたいと思っています。 伝え方はどう変える? 既存のデータの可視化においては、私自身が顧客(営業)視点で開発を進めています。しかし、システムベンダーとの要件定義の際、どうしても自分が実現可能だと感じているアイデアしか伝えがちでした。そこで、直近のシステム改修にあたっては、実現が難しいかもしれないアイデアも含め、幅広い提案をもとに話し合いを行いました。 代案提示の意味は? その結果、実現不可能に見えるアイデアに対しても、ベンダー側からは「こういった形なら実現可能」という代案を提示していただくことができました。これにより、自己完結する前にアイデアを言語化し、関係者に発散することの重要性を学びました。 参加者選定どうする? また、ブレーンストーミングの手法についても新たな学びがありました。これまでは、同じグループや部内で取り組むレクリエーション的なブレーンストーミングにおいて、出されたアイデアがどこか似通っており革新的なものを得られなかった印象がありました。今回、出したい成果に合わせて参加者を選び、初めからブレーンストーミングの設計を行うことで、以前感じていたもやもやの原因がわかり、スッキリとした気持ちになりました。

クリティカルシンキング入門

伝わる設計力で心を動かす

スライド表現の工夫は? 今回の学びを通じて、スライドは単に情報を整理するだけでなく、伝えたいメッセージをどう設計し、視覚的に届けるかを考えるための道具であると実感しました。言葉の選び方や装飾の工夫、情報の順番、グラフの形式など、細部が伝わりやすさに大きな影響を与えることに気づきました。 構造思考の必要性は? 一方、実務では、コンテキストや課題構造を捉えた構造化思考モデルを用いて議論することが多いため、思考の流れや全体像を相手と共有することが求められます。今回の学びは、そのような場においても「何をどう見せると伝わるのか」という視点を意識するヒントとなりました。 伝わる力強化の秘訣は? 今後は、スライドと構造化思考モデルの双方に共通する「伝わる設計力」をさらに高め、意思決定を支えるための視覚的な意味の構造を効果的に伝えるビューモデルの設計に取り組んでいきたいと考えています。具体的には、課題の背景や構造、検討すべき施策、期待されるインパクトを整理し、キーメッセージを短く明確に表現することを第一歩として、経営層との対話に活かせる資料作りやワークショップの設計を進める予定です。 提案資料やワークショップの設計においては、「このコンテンツで意思決定者にどんな行動を促すのか」「どのような構造で納得を得るのか」を明確にした上で、ビューの順序設計や視線の流れ、強調すべきポイント(色、太字、枠、矢印など)を意図的に取り入れていきます。特に、判断の分かれ目となる構造や施策の選択肢を、比較しやすい形でビジュアル化し、なぜそれが妥当なのかを自然に伝えられるよう心掛けます。 来週予定している経営者向けのワークショップでは、重点戦略の構造化や目標設定の意図をいかに伝えるかをポイントに、今回の学びを反映したビューモデルの設計と実践に挑戦するつもりです。

戦略思考入門

戦略的思考を身につけるコツ

戦略的思考は何? 戦略的思考とは、目標を明確に定め、その目標までの道のりを逆算し、最短・最速で到達するための考え方や意思決定法です。言い換えれば、できるだけ早く効率よく目的や目標を実現する方法とも言えます。戦略は大局的かつ長期的な目的や方針を指し、それに対して戦術は局地的で短期的な手段を意味します。 最小労力で成果は? 時間は有限です。そのため、最小限の労力で最大・最速の成果を求めることは非常に重要です。このためには、「やるべきこと」と「やらなくてもいいこと」をしっかりと選別する必要があります。そして、企業や事業が持続的な優位性を保つために「独自性」を持つことも大切です。 新規計画の鍵は? 新規業務においては、長期的な目標設定と、それを達成するための逆算による実行計画が鍵となります。この計画は、他者に理解してもらうための資料作成やプレゼンに活用できます。 目標修正はどう? 既存業務においても、大局的な目標を常にリマインドし、状況に応じた実行計画を修正することが求められます。現状を分析し、業務内容の必要性を見極めた上で、他者への説得やプレゼンに活かすことが可能です。 生活目標はどう? 私生活においては、適切なゴール設定を行う癖をつけることで、さまざまな状況における成功体験を増やすことができます。これにより、他者とのコミュニケーションにおいても、共感や参加を得やすくなるでしょう。 目標再考はどう? 無意識に自分流で行っていた目標設定や逆算についても懐疑的になり、長期的視点で適切な目標設定ができているかを考える時間を持つことが重要です。その上で目標達成までのルートを考え、「必要/不要」を判断し、より早く効率的な方法を検討します。さらに、「自分らしさ」を加えることができないか、一度考えてみることも有益です。

戦略思考入門

集合知で描くSWOT活用の新視点

フレームワーク活用の理由は? フレームワークを知っているだけでは意味がありません。特にスタッフ部門では、直接的に活用できる場面は限られているように感じていました。しかし、具体的な活用ポイントや事例を学ぶことで、SWOT分析やその他のフレームワークも、読み替えや置き換えによって適用できる場面があるのではないかと考えるようになりました。 集合知はどう作用する? また、集合知の重要性も深く心に残りました。意見が食い違う場面は日常的にありますが、それを単なる困難と捉えるのではなく、多面的な認識が得られ、議論を通して考えが洗練され、抜け漏れの防止にもつながるというポジティブな側面に着目し、有難く享受していきたいです。 体制強化の再評価は? これから取り組みたいのは、現在の体制強化の進め方についてのSWOT分析を通じた再評価です。漠然と正社員を補充するだけでなく、効率と効果の両面で新たな気づきが得られるのではないかと期待しています。また、個々がプロとして働くことから、プロ集団として組織全体で取り組むというマインドチェンジも重要です。現状ではすべてをみんなでやろうとするのは難しいかもしれませんが、メンバーの負担を軽減し、集合知の重要性を訴えながら適切な雰囲気を作ることが必要だと考えています。これは長期的な課題かもしれませんが、戦略的に最短で進めることを目指します。 SWOT分析はどう機能? まずは自組織のSWOT分析を実施し、その結果を基に体制強化策の見直しを行いたいと思います。集合知を活かす組織づくりに向けては、この研修での学びや気づきを月次会議で共有することから始めたいです。また、私自身が「一緒に仕事をしたい」と思われるような人間性と振る舞いを心掛け、日々、明るく元気に取り組むことを意識していきたいです。

データ・アナリティクス入門

データ分析で実現する未来の可能性

比較の重要性とは? データ分析において、比較は極めて重要な要素です。要素を整理し、性質や構造を明確にすることで、なぜ「良い」あるいは「悪い」と判断されるのかを理解することができます。判断するためには、特定の基準や他の対象との比較が必要であり、比較を通じて初めてデータに意味が生まれます。 目標設定の重要性 分析には目的や仮説の明確な設定が不可欠です。分析の目的が曖昧であったり、途中でぶれてしまうと、都合の良いデータばかりを使う危険性が生じます。また、不要な分析に時間をかけてしまうリスクもあります。したがって、「何を得たいのか」という分析の目的と、それに必要なデータの範囲をしっかりと見極めることが必要です。 データの特性と可視化 データは質的データと量的データに分類され、さらにそれぞれ名義尺度・順序尺度または比例尺度・間隔尺度に分解できます。それぞれのデータの特徴を理解し、注意しながら扱うことが重要です。異なるデータを組み合わせることで、ひとつのデータだけでは見えてこなかった新しい情報を得ることが可能です。これらを効果的に可視化するために、グラフを利用しますが、グラフには適した見せ方があります。例えば、割合を示すには円グラフが、絶対値の大小を比較するには棒グラフが適しています。 新プロダクトの市場分析 現在、私は新しいプロダクトのリリースによって市場規模がどれだけ拡大するかについての分析を進めています。分析結果を基にした組織全体でのコンセンサス形成が不可欠であり、そのためには分析結果をわかりやすく可視化することが重要です。講義で学んだ内容をもとに、収集したデータをEXCELで整理し、グラフで可視化する予定です。どのデータをどのグラフで可視化するかは、講義の知識を活用しつつ、基準の設定も意識しながら判断しています。

「意味」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right