戦略思考入門

異業界分析で見える未来戦略

3CとPEST分析はどう活かす? 私は戦略立案の際、主に3C分析を実施しています。特に市場と顧客についてはPEST分析も取り入れ、バリューチェーンの観点から、自身の業界だけでなく他業界も分析しています。その際、各業界の特徴や流行に注目し、視野を広げるよう努めています。 上位者の意見はどう反映する? また、戦略や事業計画の立案にあたっては、他業種の分析を組み合わせることで、業界特有の要因とタイミングによる変動を明確にし、方向性を判断しやすくすると考えています。その上で、上位者の意見を参考にすれば、より深い議論が可能になると思っています。 毎月の業界分析はどう進む? さらに、市場・顧客および競合環境の変化が激しい状況下でも、特定の業界に限定せず、興味を持った業界のバリューチェーンや3C分析を実施し、その成果をワークとして形に残していきたいと考えています。具体的には、毎月1業界を対象に分析を行い、業界全体の理解を深めるとともに、第三者からのフィードバックを受けられるように取り組んでいます。

データ・アナリティクス入門

振り返りが照らす学びの道

目的と手段の違いは? 分析に取り組む際、まず「要素の分類化」や「比較」という視点を確認しました。分析はあくまで手段であり、目的ではないという点が印象に残ります。これにより、仮説を元に進める中で、途中から「差分探し」が目的化してしまわないよう注意する必要性を感じました。 レポート設定の意義は? また、定期的な分析レポートを実施する際には、改めてその目的を明確に設定することが大切だと再認識しました。業務の中で、分析自体が目的とならず、真に必要な意味を見出すために、常に差分に敏感になり、その差分がどのような意味を持つのかを意識する習慣を身につけることが求められます。 PDCAはどう実践する? さらに、すべての分析には仮説を立て、得られた結果に基づいて施策のPDCAサイクルを実行することが基本です。報告時には、ただ結果を示すだけでなく、分析の目的や背景を相手に伝える工夫が必要です。分析を終えた後は、やりっぱなしにせず、必ず振り返りの時間を設け、次のアクションにつなげることが今後の改善に寄与するでしょう。

データ・アナリティクス入門

仮説を実践!A/Bテスト現場記

目的は明確ですか? まず、A/Bテストを行う際は、目的と仮説を明確にすることが大切です。検証項目をしっかりと設定した上で、テスト対象を1つの要素に絞り、無駄な混乱を避けます。 期間は統一ですか? また、A/Bテストは必ず同じ期間内で同時に実施する必要があります。異なる期間で行ってしまうと、テスト以外の環境要因が影響し、正確な検証が困難になるためです。 仮説の幅広げる工夫は? キャンペーンメールの場合も、基本として要素を一つに絞り、同一期間での同時実施を心がけています。しかし、仮説を明確にするのが難しく、有意差が出にくい状況もあるため、フレームワークを活用して仮説の幅を広げる工夫を行っています。 最適仮説は何ですか? その上で、自分が実施したいキャンペーンにおいては、コンバージョン獲得のため検証すべき仮説を、フレームワークを用いて整理し書き出します。そして、どの仮説が最も効果的なのかを考慮しながらキャンペーンを実行し、結果をもとに検証と改善のサイクルを繰り返すことで成果を追求しています。

リーダーシップ・キャリアビジョン入門

気遣いが生む目標達成の物語

目標設定の工夫はどう? 期初に1年間の目標を設定する際、組織の約束成果を基に個人の目標へと落とし込んでいます。これにより、メンバーの中には組織の課題や成功イメージをしっかりと理解する方もいらっしゃいますが、一方で十分に理解されずにエンパワメントが実施されることも見受けられます。そのため、「相手を知る」ことと「相手を考える」ことに十分注意し、相手の状況を正しく把握することが重要となります。 相手理解は十分か? 「相手を知る」ためには、特に時間的余裕や意欲を双方向のコミュニケーションを通して丁寧に確認することが求められます。また、「相手を考える」際には、問題意識や意欲の程度、さらには「分からない」「できない」「やりたくない」という状態の違いを注意深く見極め、感情と合理性とのバランスを取って対応することが大切です。長期的なビジョンは確保されているものの、現状の明確な問題はないため、課題抽出から成功イメージに基づいた業務実施の過程において、エンパワメントがどのように機能するかが今後の焦点となっています。

マーケティング入門

未来へ駆ける学びの一歩

セグメントの意義は? 製品の売り方を考える場合、まず市場を一定の条件で分けるセグメンテーションを行い、その中から具体的な標的を絞るターゲティングを実施します。ターゲティングの評価には6Rを活用し、製品の特徴を正しく伝えるための訴求ポイントを把握することが大切です。また、顧客に伝える際には、顧客が持つイメージマップが製品の特徴と必ずしも一致しないことを前提に、他社との差別化ポイントを明確にする必要があります。 新製品アップの道は? 自社製品については、新製品へのアップグレードを検討しており、これを機にターゲティングの見直しを進め、再度市場を分解して6Rによる評価を行う予定です。さらに、これまでのターゲット層から新たな顧客層へのアプローチを目指し、ポジショニングマップを作成しながら顧客ニーズを的確に把握する取り組みが重要となっています。 クラウドの未来は? また、一般的なクラウド製品やサブスクリプション型の製品に対する市場のイメージについても理解を深め、今後の戦略に反映させることを考えています。

戦略思考入門

フレームワークで磨く戦略思考

戦略学習はどう感じる? 戦略的思考を養うために、さまざまなビジネスフレームワークを学び、それらの活用方法を理解できたことが大きな収穫です。普段の業務において、意識的にフレームワークを取り入れ、着実にスキルとして身に着けることが重要だと考えています。 戦略実践で何を実感した? 勤務先で長期のビジネス戦略を立案する際、学んだフレームワークを手元に置きながら、使えるものを積極的に適用しています。その過程で、不足している情報や欠けている視点を明らかにし、それを補うことで、より高い価値の創出を目指しています。また、人事戦略の立案においても、これらのフレームワークを活用するよう努めています。 次の一手は何にする? 具体的な取り組みとして、以下の3点を実施する予定です。1.今年の人事戦略立案にフレームワークを活用する。2.会社のビジネス戦略のディスカッションの際、フレームワークを適用して重要な視点を見出し、それをインプットする。3.自身が学んだ内容をチームメンバーや友人知人に説明し、理解を深め定着させる。

データ・アナリティクス入門

データ分析で役立つ具体的アプローチ

分析の流れをどう把握する? 分析とは、目的、仮説、問い、そしてデータ収集・加工を行うという流れをきちんと把握することが重要だと感じました。また、インパクト、ギャップ、トレンド、ばらつきなどの各因子を鑑みたうえで数値を見ていくことが必要であると理解しました。 代表値の注意点とは? 何かとすぐに飛びつきがちな代表値の中でも、特に単純平均値には注意が必要です。業務では、サイト流入数や売上など様々な数値を見る機会が多いため、一つの代表値だけでなく、多様な代表値を目的をもって算出したり、散らばりを意識した分析を行いたいと感じました。 データ収集のポイントは? 日次、週次、月次など期間を定めた上で、数値の意味を考えたデータ収集や分析を行うことが重要です。過去のデータを活用しながら自分なりの仮説を立て、今回学んだフロー(目的→仮説・問い→データ収集→検証)を実施していきたいです。また、インパクト(重み)、ギャップ(差異)、ばらつき(分布)といった視点を意識しながら、数値の意味を考えていきたいと思います。

データ・アナリティクス入門

データ解析の「やったつもり」を脱却する方法

直感的な解析で本当に大丈夫? 本講座の学習と総合演習を通じて、"直感的なデータ解析はNG"であることを強く感じました。合計や平均などの一般的な解析手法を反射的に実施してしまう癖があり、それらを実施しただけで"やったつもり"になってしまう場面があることを再認識しました。 ビジネスに繋がる数字とは? 業務において求められているのは、誰でも分かる当たり前の数字を出すことではなく、ビジネス上の優位性を生む数字です。例えば、競合他社より売り上げを伸ばす、納期や費用を圧縮するといった具体的な目標に直結する数字が求められます。今後は、どのデータをどう活用すればこうした差を生む数字を導き出せるかを整理し、解析業務の棚卸を行いたいと考えています。 データの棚卸しで見直すべき点 具体的には、定型業務の棚卸を実施し、これまで報告してきたデータの有効性を見直す予定です。これまで蓄積してきたデータが、競争上の優位性を生む数字となっているかを評価し、有効であれば継続し、効果がなければ見直しを行い、代替案を提案します。

クリティカルシンキング入門

もう一人の自分に出会う瞬間

判断のポイントは? 業務において、経験則に基づいて判断できる範囲では、スムーズに業務を進めることが可能です。しかし、実績のない経験則や、必要十分な情報に欠ける状況では、自信を持って意思決定することが難しくなります。そのような場合には、ロジックツリーを用いて自らの思考を体系的に整理することが有効です。こうした方法によって、問いと回答を明確にし、求められている内容を正確に把握する手助けとなります。 意識の高め方は? また、具体化と抽象化を繰り返し実施して、思考の偏りが生じていないかを常に確認することも大切です。さらに、自分自身に「なぜそう考えるのか」という問いを投げ続けることで、別の視点を持つ「もう一人の自分」を育てる意識が培われます。 活用の方法は? このプロセスは、日々の業務や学びにおいて、視点、視野、視座という三つの観点を意識的に活用することで、より豊かな洞察へとつながるでしょう。今後は、これらの考え方を具体的な状況にどのように適用していくのか、実践を通じて深めていくことが期待されます。

データ・アナリティクス入門

数値分析で掴む学びの一歩

数字の意味は? 数字だけが羅列されているデータは、そのままでは意味を把握しづらいと感じました。データを適切に加工することで、理解が深まると思います。 数値の分析法は? 数値の分析にあたっては、代表値や散らばりに注目する必要があります。代表値としては、単純平均、加重平均、幾何平均、中央値などがあり、それぞれの状況に合わせた選択が求められると感じました。 年齢層の傾向は? また、コミュニティ内の受講生の年齢層を考える場合、単純平均だけでなく、中央値や散らばりも分析することで、どの層にアプローチすべきか、またはまだ十分に届いていない層に合わせたサービス展開を検討できると考えました。 情報収集はどう? 現状、年齢データを明確に把握する手段がないため、まずはアンケートの実施や入会時のデータ取得を通じて、年齢情報の収集が必要です。さらに、退会者数についても、単なる人数の推移のグラフではなく、どの時期に退会率が高いのかといった散らばりも視覚化することで、より具体的な分析が可能になると思います。

クリティカルシンキング入門

分解で発見!学びのチャレンジ

分解の意義は? 「分けていく」ことは、理解を深めるための重要な手段です。たとえば、数字を活用する際には、まず全体を定義し、目的に沿った切り口で分解することが求められます。このプロセスは、結果がすぐに見えてこなくても、どこに傾向があるかを把握する手助けとなります。 迷いはどう克服? 分解する作業に迷いが生じた場合も、早急に結論へたどり着くために、思い切って分解を実施してみることが大切です。時間をかけて検討するより、まずは行動してみることで、意外な発見に繋がることもあります。 課題の本質は? 顧客実績のデータ分析においては、これまで曖昧な課題から無理やり示唆を引き出してしまうことがありました。そのため、問題提起の初めに目的を明確にし、「問題箇所」の特定、「原因究明」、そして「解決策」の各ステップを順序立てて検討する姿勢が必要です。 相談で解決する? また、業務に関しては、同僚や部下との相談を積極的に行い、情報の整理や意見交換を通じて、より良い解決策につなげることが望まれます。

データ・アナリティクス入門

エビデンスが示す戦略の新境地

A/Bテストとは? A/Bテストは、データ分析における「比較」の重要性を実感させる手法です。ランダムにサンプルを抽出することで、一定数の調査データから精度の高い結果が得られる点や、どの工程でボトルネックが発生しているか割合を算出できる点に実践的な可能性を感じました。 戦略の判断基準は? 勤務先のイメージ戦略について、2つの側面のうちどちらを強調すべきかは感覚的には把握しているものの、エビデンスが不足しているため不安な面もあります。A/Bテストを活用すれば、どちらがより効果的か明確に判断できるのではという期待から、早速ターゲティングサービスを提供する業者に同様のサービスがあるか確認する予定です。ただし、単純にAかBのどちらかだけではなく、両方を組み合わせた戦略が効果を高める可能性もあると考え、慎重な実施が必要だと感じています。そこでまずは広告代理店に相談し、業界の広報戦略が十分に実践されていない現状を踏まえた実証実験として、自社と共同で取り組める可能性を探るため、休み明けに連絡するつもりです。
AIコーチング導線バナー

「実施」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right